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Question Sheet 1

Sets

1. (a) Let A and B be finite sets with |A| “ a, |B| “ b. Suppose that |AYB| “ a` b´n ě 0.
Give an expression for |AXB| [Recall that we use |S| to denote the number of elements
in a set].

(b) Give an expression for |AXB XC| in terms of |AYB YC|, |AYB|, |AYC|, |B YC|,
and |A|, |B|, |C|.

(c) What do you notice about the signs of each of the terms?

2. Consider the family of sets
P2 “ t2u

Pn “ Pn´1 Y t p P N : 2 ď p ď n, and for all q P Pn´1, q does not divide p u.

Write out in full, using roster notation tu, the elements contained in P25.

3. An infinite set S is called countably infinite if its elements can be written out in a list.
For example, N is countably infinite as N can be written as a list t1, 2, 3, 4, . . .u.

(a) Construct a list to show that Z is countably infinite.

(b) Construct a list to show that Q, the rational numbers, is countably infinite.

(c) Do you think that R is countably infinite?

4. One problem you might not have noticed is that our naive approach to defining sets sometimes
allows us to create sets which might be rather contradictory. Consider this:

Let S be the set of all sets which do not contain themselves.

At first this might seem like a valid set. However, one question suddenly becomes impossible
to answer:

Does S contain S?

This problem, called Russel’s paradox, has been resolved by modern approaches to set
theory, but the first attempt at set theory (called Naive set theory) did raise issues such
as this. Prove that this statement is contradictory.

5. Let A and B be two finite sets. The Cartesian product of A and B, written AˆB, is the
set of ordered pairs from A and B. That is,

AˆB “ tpa, bq : a P A, b P Bu.
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(a) Give an expression for |AˆB|.

(b) Let f : AˆAÑ A. Is it possible that f is injective?

Functions and Relations

6. For each of the following functions, determine whether or not they are (a) Injective (b)
Surjective.

(a) f : RÑ R where fpxq “ x2.

(b) f : RÑ R` where fpxq “ x2.

(c) f : ZÑ Z where fpxq “ 3x.

(d) f : Z ˆ N` Ñ Q where fpa, bq “ a{b. [Note: Z ˆ N` means we take one element from
both of these sets. Recall also that 0 R N`.]

7. For each of the following relations, determine whether or not they are (a) Symmetric, (b)
Reflexive, (c) Transitive:

(a) Let a, b P R, then a „ b if a ď b.

(b) Let a, b P R, then a „ b if a ă b.

(c) Let x and y be strings (i.e. collections of characters), with x „ y if x appears at or
before y in the dictionary.

(d) Let x and y be strings, with x „ y if x can be changed into y by adding, changing, or
deleting exactly one character.

8. Let f : ZÑ Z where

fpxq “

#

x
2 x is even

3x` 1 x is odd.

(a) Compute f9p64q. What do you notice?

(b) Compute f7p3q.

(c) Compute fnp7q, for n “ 10 and explain how the sequence will continue as n increases.

You might have realised that every number we tested so far eventually returns to 1. Do
you think this is true for all n P N? This is actually an important unsolved problem in
mathematics called the Collatz conjecture. The conjecture has been shown to be true for
the first « 2.95ˆ 1020 numbers, but we still haven’t managed to prove the result!

9. Prove that the function f : RÑ R where fpxq “ ax2` bx` c is injective if and only if a “ 0
and b ‰ 0.

10. (Hard) Recall that, given an equivalence relation „ on a set S, an equivalence class is a
maximal subset C Ď S such that all of the elements in C are equivalent, i.e. a „ b for all
a, b P C.

Let f : RÑ R be a real-valued function. Let „ be a relation defined by

a „ b if fpaq “ fpbq.

Given some element s P S, we will denote the equivalence class of s by s̄. Let E be the set
of equivalence classes on R defined by „.

Now define a new function f̄ : E Ñ R such that f̄ps̄q “ fpsq for each equivalence class.

(a) Show that f̄ is well defined. I.e. for two elements a, b P S with a „ b, that f̄pāq “ f̄pb̄q.

(b) Prove that the new function f̄ is injective on E.

2



Question Sheet 2

Logic and Statements

1. For each the following pairs of statements, determine whether the first is (i) Sufficient (ii)
Necessary for the second.

(a) Harry is a Burmese cat. Harry has fur.
(b) Ethanol is a gas at 100˝ C. Ethanol has a boiling point of 78˝ C.
(c) x is a multiple of 6. x is a multiple of 2 and a multiple of 3.
(d) John thinks Jane is cool. Jane thinks John is cool.
(e) I am a vegetarian. I don’t consume meat.

2. Let fpxq “ x2 ` bx ` c for some b, c P R. Prove that the following two statements are
equivalent:

• For all x P R, fpxq ą 0.

• b2 ´ 4c ă 0.

3. Suppose we have 3 statements A,B and C which we want to prove are equivalent. We can
only prove one implication ùñ at a time. How can we show the three statements are
equivalent with the lowest number of implications? What if we had n equivalent statements?

Negations

4. Construct a truth table on A and B for the following statement:

␣pA^Bq ðñ ␣A_␣B

What do you notice? Here is a similar statement:

␣pA_Bq ðñ ␣A^␣B.

These two statements are called De Morgan’s Laws. Use De Morgan’s laws to negate the
statements

Harriet is a banker and Janet is her boss.

Either you’re a good liar, or you’re incredibly persuasive.

5. Negate the following statements:

(a) @x ą 0, D y ą 0 rx´ y “ fpxqs.

(b) Dn P N r @m ě n ran ` an´1 ď bpmqss

(c) @x, y P R r fpxq ´ fpyq “ 0 ùñ rfpxq2 ´ fpyq2 ´ 1 ă |x| ss

(d) @ a, D b, @ c, D d, @ e, D f rP pa, b, c, d, e, fq s
(N.b. P pa, b, c, d, e, fq is some variable statement in terms of a, b, c, d, e, f .)

Many mathematicians will use slightly different notation for statements like these. You might
sometimes see ‘s.t.’ (short for ‘such that’) between the existential quantifier and the universal
quantifier. It can also be used in place of the square brackets we’ve been using.

6. Negate the following statements:

(a) ‘Every dog in Japan is a Shiba Inu’.

(b) ‘After every single magic show I’ve seen, there was at least one person who thought it
was real.’

(c) ‘There is at least one kind of food you don’t like.’

(d) ‘Every politician lies, and there is at least one lawyer who doesn’t.
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Proof

7. (a) Prove the following identity by induction:

n
ÿ

i“1

i2 “
npn` 1qp2n` 1q

6
.

(b) Let a1 “ 1 and let an “ 2an´1 ` 1 for n P N with n ě 2. Give a short inductive
argument to explain why an ě 0 for all n P N. Using this, prove using induction that
|an| ě 2pn´1q for all n P N.

8. Recall that a countably infinite set S is an infinite set whose elements can be written in
an infinite list, and recall that the Cartesian product of two sets A and B, denoted AˆB is
the set

AˆB “ tpa, bq : a P A, b P Bu.

(a) Let S1 and S2 be two countably infinite sets. Prove that the Cartesian product S1ˆS2

is also countably infinite. [Hint: you might want to use a 2-dimensional argument.]

(b) Using this fact, prove that any finite Cartesian product S1 ˆ ¨ ¨ ¨ ˆ Sn is also countably
infinite for any n P N.

9. Recall that given a statement A ùñ B that this is logically equivalent to ␣B ùñ ␣A.
This is called proving the contrapositive.

Let A and B be two finite sets with |A| “ |B|. Use the contrapositive to prove the following
statement:

f : AÑ B is injective ùñ f is surjective.

10. (Hard). Recall that the Fibonnaci sequence is given by F1 “ 1, F2 “ 1 and Fn “

Fn´1 ` Fn´2 for n P N with n ě 3.

(a) Let x P R` be a positive real number. Find an expression using binomial expansion for

p1` xqn ´ p1´ xqn.

(b) Prove the following formula using induction:

Fn “
1
?
5

«

ˆ

1`
?
5

2

˙n

´

ˆ

1´
?
5

2

˙n
ff

.

This formula is called Binet’s formula, and you might learn how to derive it in a
course on differential equations.
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Question Sheet 3

Euclidean Division

1. Using the Division algorithm, compute the highest common factor of 7938 and 4608.

2. You might be surprised to learn that Euclid’s algorithm can actually be applied to many
different kinds of objects.

(a) Let fpxq, gpxq P Rrxs (i.e. polynomials in x with real coefficients). Assume further that
degpfq ě degpgq. Show that there exists some qpxq and rpxq such that

fpxq “ gpxqqpxq ` rpxq

and degprq ă degpgq.

(b) Using the resulting division algorithm for polynomials, compute the highest common
factor of

fpxq “ x4 ´ x3 ` 2x2 ´ 9x` 7

gpxq “ 4x3 ´ x2 ´ 4x` 1.

The kinds of mathematical spaces where we can perform Euclidean division are called
Euclidean domains, and they have many useful and important properties.

3. For each of the following pairs of numbers m,n P Z, find some a, b P Z such that

am` bn “ hcfpm,nq.

(a) 5 and 21.

(b) 25 and 55.

(c) 152 and 106.

(d) 284 and 53.

Now suppose that we have some number m and a prime number p where p does not divide
m. Explain why we can always find some expression

am` bp “ 1

where a, b P Z.

Modular Arithmetic

4. Using the results of question 3, show that in arithmetic mod p, any number x P t1, . . . , p´1u
has a multiplicative inverse. That is to say, show that there exists some y P t0, . . . , p ´ 1u
such that

xy “ 1mod p.

Notice that 0 is the only number which does not have a multiplicative inverse (much like how
we cannot divide by 0 in R). If every number has a multiplicative inverse, this is one way of
expressing that the integers mod p are a kind of object called a field, where every number
can be added, subtracted, multiplied and divided (except 0).

Explain for which values of n the set Zn is a field.

5. For this question, we’re going to look at polynomials with coefficients in Z3.
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(a) Consider the following polynomial f P Zrxs:

fpxq “ 7x2 ` 11x` 2

By considering this polynomial mod 3, show that for all x P Z, fpxq is not divisible by
3. Hence explain why the equation fpxq “ 0 has no solutions in Z.

(b) Consider the polynomial
gpxq “ x2 ` 1.

Prove that given some x P Z, we must always have that

gpfpxqq “ 3n` 2 for some n P Z.

6. (a) Is 3030 ` 1 divisible by 12?

(b) What is 3131 mod12?

(c) What is the final digit of 10891089?

(d) Compute x6 mod7 for x P t0, 1, 2, 3, 4, 5, 6u. What do you notice? After tomorrow’s
lecture you might be able to prove your conjecture.

7. We saw in lecture 2 that
?
2 is irrational. Use a proof by contradiction and arithmetic mod 6

to prove that the fraction
lnp3q

lnp6q

must be irrational. How does your argument fail for lnp2q{ lnp4q?

8. Euclid proved that there must be infinitely many prime numbers. Prove that there must be
infinitely many prime numbers.

Rings and Integral Domains

9. (Very Hard). We saw earlier that there are some alternative objects on which we can apply
the Euclidean algorithm. Suppose we have some system of arithmetic in which we can add,
subtract and multiply (not necessarily divide). The technical name for an object like this is
a ring. You can read more about rings online and see their complete definition.

Given some ring R, we say that R is an integral domain if multiplication in R is com-
mutative (i.e. ab “ ba for a, b P R), and given two nonzero elements x, y P R we must have
xy ‰ 0 (this is sometimes phrased as R not having any zero-divisors).

An integral domain is called a Euclidean domain if there is some function f : R Ñ N
such that given any a, b P R with b ‰ 0, then there exists some q, r P R with

a “ bq ` r

with either fprq ă fpbq or fprq “ 0.

(a) Can you think of an example of a ring which is not an integral domain?

(b) What was fpxq in the polynomial ring in question 2?

(c) Using the well-ordering principle, prove the existence step of Euclid’s division lemma
for general Euclidean domains.

(d) Is the remainder r unique in general Euclidean domains?

10. (Hard). In the lecture we mentioned the Fundamental Theorem of Arithmetic. This
result demonstrated that every natural number could be factorised uniquely into a product
of prime numbers.

In algebraic number theory, we often work with more general domains where, like in the
integers, factorisation is possible. As it turns out, some of these domains (called Unique
Factorisation Domains, UFDs) have unique factorisation, but in general this isn’t the
case.
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(a) Consider the Gaussian integers Zris. That is

Zris “ ta` bi : a, b P Zu Ă C.

Prove that there exists some function fpzq : Zris Ñ R`Yt0u which satisfies the require-
ments of a Euclidean function.

(b) It is known that all Euclidean domains are unique factorisation domains.

i. Consider the integral domain

Zr
?
´5s “ ta` b

?
´5 : a, b P Zu Ă C.

Is factorisation unique in this domain?

ii. Using your answer to part (i), ascertain whether or not the integral domain Zr
?
´5s

is a Euclidean domain.
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Question Sheet 4

Groups

1. Prove that the following sets and their binary operations are groups.

(a) pZ,`q.
(b) pQ˚,ˆq.

(c) pR,`q where R “ tf : RÑ R | fp1q “ 0u.

(d) pS,ˆq where S “ tz P C : |z| “ 1u. If you haven’t met the complex numbers yet, here
is one definition:

C “ ta` bi : a, b P R, i2 “ ´1u.

and we define
|a` bi| “

a

a2 ` b2.

(e) The set of all possible rotations R “ t0 ď ρ ă 2πu of the unit circle under composition.

2. In this question, we’ll talk about constructing larger groups out of smaller groups.

(a) Show that pR2,`q is a group.

(b) Suppose that G1 and G2 are two groups with operations ˆ1 and ˆ2 respectively. Show
that

G1 ˆG2 “ tpg1, g2q : g1 P G1, g2 P G2u

is a group under the operation

pg1, h1q ¨ pg2, h2q “ pg1 ˆ1 g2, h1 ˆ2 h2q.

3. Consider each of the following examples of sets and binary operations. Are they groups? If
they are groups, are they abelian?

(a) The set of rotational symmetries of any 2d-polygon P , under composition.

(b) The set of all functions f : RÑ R under multiplication.

(c) The set Z but with a ˚ b “ a` b` 1.

(d) The set of all strings under concatenation.

4. Let D be the group of symmetries of the triangle (a Dihedral group).

(a) What is |D|?

(b) Draw a complete multiplication table for |D|.

5. Consider the following set:
G “ t1, x, y, zu

with x2 “ y2 “ z2 “ 1.

(a) G is a group under multiplication. Using this fact, deduce what element is given by the
products xy, yz and zx.

(b) Using your answer, draw a multiplication table for G.

(c) Determine and prove whether or not G is an abelian group.

6. Recall the group pZ7,`q of integers modulo 7 with addition. We’re going to consider the
same set Z7, but now with multiplication.

(a) Does 3 have a multiplicative inverse in Z7? Show that there is another number x such
that 3x “ 1 in Z7.

(b) We’ve just shown that 3 has a multiplicative inverse. What is the multiplicative group
generated by 3? Write out x3y explicitly. What do you notice?
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7. In lecture 3 we saw Bézout’s identity. Furthermore, in the third problem sheet we saw that
we could use Bézouts identity to retrieve a useful result. In particular, we saw that for any
prime p and for any x P t1, 2, . . . , p´ 1u, there existed some x´1 such that

x ¨ x´1 ” x´1x ” 1mod p.

Use this fact to prove that the set

Z˚
p “ t1, . . . , p´ 1u

is a group under multiplication.

8. (Hard). Suppose we have some multiplicative group G such that for every element g P G,
g2 “ 1. Prove that G must be abelian.

Subgroups, Cosets and Lagrange’s Theorem

9. Consider the group G “ pZ,`q of integers under addition and the subgroup H “ pnZ,`q for
some fixed n P N, where

nZ “ tnz : z P Zu.

(a) Prove that H is a subgroup of G.

(b) What is the index rG : Hs of H in G?

(c) Suppose now we have two subgroups Hn “ pnZ,`q and Hm “ pmZ,`q. Consider the
set

Hn `Hm “ tnx`my : x, y P Zu.

This is a subgroup of Z. Show that there exists some k P N such that

Hn `Hm “ Hk.

(d) Give a brief argument to explain why all subgroups of Z are of the form aZ for some
a P N.

10. (Hard). Recall that the multiplicative subgroup generated by an element g P G is given by

xgy “ t. . . , g´2, g´1, 1, g, g2, . . .u ď G.

In the previous question we saw that pZ˚
p ,ˆq is a multiplicative group for any prime p. By

considering each element 1 ď x ď p´ 1 with x P Z˚
p , and the subgroup it generates xxy, use

Lagrange’s theorem to prove the following result:

Theorem 1 (Fermat’s Little Theorem).
For all x ě 1 P N and any prime p,

xp´1 ” 1mod p.
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Question Sheet 5

Sequences and Series

1. For each of the following sequences, do they converge or diverge? If they converge, what
are they converging to? [Note that in this question we take all sequences to start at n “ 1.]

(a) an “
n`1
n2`1 .

(b) an “
3n2

`2n
n2`1 .

(c) an “ sinp1{nq ` cosp1{nq.

(d) an “ sinpsinpsinpsinp1{nqqqq.

(e) an “ lnpnq.

(f) an “ lnplnpnqq.

2. For each of the following series, do they converge or diverge If they converge, what are
they converging to?

(a) Sn “
řn

k“1 2
´k.

(b) Sn “
řn

k“1p´1q
k.

(c) Sn “
řn

k“1
1

lnpk`1q
.

(d) Sn “
řn

k“1 sinpkq.

(e) Sn “
řn

k“1 sinpπkq.

3. Use the fact that for small x, sinpxq « x to explain why the series

Sn “

n
ÿ

k“1

sin

ˆ

1

k

˙

does not converge.

4. The triangle inequality states that for any two numbers x, y P R we have

|x` y| ď |x| ` |y|.

We say that a series

Sn “

n
ÿ

k“1

fpkq

is absolutely convergent if the series

S1
n “

n
ÿ

k“1

|fpkq|

converges. Use the triangle inequality to demonstrate that an absolutely convergent series is,
in fact, convergent.

5. Suppose that we have some series Sn “
řn

k“1p´1q
nfpkq where fpkq ě 0 for all k.

(a) Show that if fpk ` 1q ă fpkq for all k P N, then

lim
kÑ8

fpkq “ 0 ùñ Sn is convergent.

(b) Hence show that the series

Sn “

n
ÿ

k“1

p´1qk
1

k

is convergent, but not absolutely convergent.
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Limits and Continuity

6. Evaluate if each of these limits exists. If it does, what is the limit?

(a) limxÑ10
1

x2´100 .

(b) limxÑπ lnpxq.

(c) limxÑ π
2

sinpxq

cospxq
.

(d) limxÑ0
sinpxq

x .

(e) limxÑ8
x2

`1
2x2´1 `

x4

x5´x3´x .

7. Use the limit version of continuity to ascertain whether or not the following functions are
continuous:

(a) fpxq “ x3 ´ 2x.

(b) fpxq “ 1
|x|`1 .

(c)

fpxq “

#

0 x ă 0

1 x ě 0

(d) fpxq “ ex.

(e) fpxq “ 1
x on R˚.

8. In this question, we’ll explore how to re-derive the chain rule from first principles.

(a) Using the formal definition of limit, compute the derivative of x3. What do you notice
about the terms which went to zero in the limit?

(b) Using the binomial expansion formula

px` yqn “
n
ÿ

k“0

ˆ

x
y

˙

xn´kyk,

derive an expression for d
dxx

n.

9. Using the limit definition for continuity, prove that if f : R Ñ R and g : R Ñ R are two
continuous functions, then their composition

f ˝ g “ fpgpxqq

is also continuous.

10. (Hard). Using the formal definition of the derivative, re-derive the quotient rule

d

dx

fpxq

gpxq
“

gpxqf 1pxq ´ fpxqg1pxq

gpxq2
.
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Question Sheet 6

Linear Maps and Vector Spaces

1. Explain whether or not each of the following functions is linear:

(a) fpxq : RÑ R with fpxq “ 3x.

(b) fpxq : RÑ R2 with fpxq “ p2x` 1, 5x´ 1q.

(c) fpxq : R2 Ñ R2 with fpx, yq “ p2xy ` 2x, x` yq.

(d) Let fpxq “ 3x` 2, and let gpxq “ 2x´ 1. Is fpxqgpxq linear?

(e) How about fpgpxqq?

2. Prove that R3 is a vector space over R.

3. Consider the following. Which are vector spaces and which are not?

(a) C2 over C.
(b) Q over R.
(c) C over R.
(d) ta` b

?
2 : a, b, P Qu over Q.

(e) Z over R.
(f) Z2 over Z.

4. Consider the following matrices M . Compute the set of vectors v for which Mv “ 0.

(a)

M “

„

4 1
1 0

ȷ

(b)

M “

„

2 1
4 2

ȷ

(c)

M “

„

0 0
0 0

ȷ

What do you notice about the dimensions of the spaces you found?

Matrices for Linear Systems

5. Consider the following matrix:

X “

»

—

—

–

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

fi

ffi

ffi

fl

(a) Compute Xn for n “ 2, 3, 4.

(b) Hence compute X3 ´ 2X.

(c) Hence compute X4 ´ 4X3 ` 6X2 ´ 4X ` I. What do you notice? This is called the
characteristic polynomial of the matrix.

6. Represent the following simultaneous equations using a matrix. Hence construct inverse
matrices and solve the simultaneous equations.
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(a)

14 “ 2x` 3y

20 “ 3x` 4y

(b)

´2 “ 3x´ 4y

´10 “ ´7x` 2y

(c)

π “ 2x´ 5y

e “ 3x` 12y

7. Consider the following matrix:

M “

»

—

—

—

—

–

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

(a) By considering what happens to the point p1, 0, 0, 0, 0q, evaluate the determinant of this
matrix.

(b) Is this matrix invertible?

(c) Compute Mn for n “ 2, 3, 4, 5. What do you notice? Matrices with this property are
called nilpotent matrices.

Matrix Algebra

8. Consider the set

S “

"„

a b
0 c

ȷ

: a, b, c P R, a, c ‰ 0

*

Show that this is a group under matrix multiplication.

9. (a) Consider the following matrix with entries in Z.

A “

„

a b
c d

ȷ

What conditions can we apply to a and b so we can be certain that there exists some
c, d P Z with detpAq “ 2.

(b) Consider the following matrix with entries in Z.

B “

„

a p
b c

ȷ

where a, b, c, p P Z and c is a prime number. What requirements are there on c such
that there exists some a, b P Z where B P SL2pZq?

10. (Hard). For each of the elements of the dihedral group D8 (the symmetries of the square),
find a 2ˆ 2 matrix which represents it.
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Question Sheet 7

Iterative Methods

1. For each of the following equations, create an iterative function gpxnq “ xn`1. Determine if
your iterative function converges by iterating to find a solution. Unless otherwise specified,
take x1 “ 1.

(a) x2 ´ 3x´ 3 “ 0.

(b) x3 ` 10x´ 2 “ x4.

(c) x2 “ sinpxq ` 1.

(d) sinpxq “ cos2pxq ` x2

10 starting with x1 “ ´1.

(e) x5 ´ x4 ` πx3 ` x2 ´ 2x` 3 “ 0.

2. Using theNewton-Raphson method, create iterative formulae to iteratively find a solution
to the following equations:

(a) x2 ´ 2x´ 1 “ 0 starting with x1 “ 2.

(b) x5 ´ x4 ` πx3 ` x2 ´ 2x` 3 “ 0 starting with x1 “ ´2.

(c) sin2pxq ´ 2x` 1 “ 0 starting with x1 “ 1.

(d) ex ´ 5x ` 4 “ 0 starting with x1 “ 1.

(e) x´`1 “ 0 starting with x1 “ ´1{2.

3. Draw a spider diagram to show the path of convergence in the Newton-Raphson method for

fpxq “ sinx “ 0

starting at x1 “ 2. To what number is this sequence converging?

Completeness

4. Using the notion of completeness that a set is complete if it contains all of its limit points,
explain whether or not each of the following sets is complete.

(a) The complex numbers C.
(b) Pairs of real numbers R2.

(c) The rational numbers Q.

(d) The integers Z.

Supremum and Infimum

5. For each of the following sets or sequences, find (i) its supremum (ii) its infimum. Again
we take n “ 1 as the first case with n P N.

(a) The sequence an “ 1{x.

(b) The set S “
␣

a
b : a, b P Z, a ą b ą 0

(

.

(c) The sequence an “ sinpnq.

(d) The set S “ t1´ ε : 1 ą ε ą 0u.

(e) The sequence an “ sinpnq ` cospnq. [Hint: recall that adding a sine and a cosine with
the same frequency can be written as a single sine or cosine with a phase shift.]

6. Let A,B Ă R be two bounded sets (i.e. bounded above and below). Let A ` B “ ta ` b :
a P A, b P Bu. Show that

supA` supB “ suppA`Bq.
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The Intermediate Value Theorem

7. For each of the following continuous functions fpxq : R Ñ R, locate a solution fpxq “ 0 by
bisecting the interval 4 times.

(a) fpxq “ x2 ´ 2. Start with the interval r1, 2s.

(b) fpxq “ x3 ´ 2x´ 2. Start with the interval r0, 4s.

(c) fpxq “ sinx` x3 ´ 4x´ 2. Start with the interval r2, 3s.

8. Let
fpxq “ sinx` x and gpxq “ 5´ x2.

Use the intermediate value theorem to demonstrate:

(a) There exists a point c P r0, 4s such that fpxq “ gpxq.

(b) There exists a point c1 P r´4, 0s such that f 1pxq “ g1pxq.

Riemann Integration

9. Approximate each of the following integrals using a Riemann sum with (i) 3 strips (ii) 6
strips.

(a)
ż 3

0

x2 ´ x` 1 dx.

(b)
ż 6

0

esin x dx.

(c)
ż 2π

0

cospxqdx.

(d)
ż 2π

0

sinpsinpsinpxqqq dx.

The Fundamental Theorem of Calculus

10. Using the fundamental theorem of calculus, answer the following questions.

(a) Let

fpxq “

ż x

2

sinptq ` 3t2 ´ 5 dt.

what is f 1pπq?

(b) Compute the derivative of fpxq “ sinx` 5x2 ` 2. Hence evaluate

ż π

0

cospxq ` 10xdx.

15



Question Sheet 8

Differentiation

1. In this question we’re going to derive the derivative of sinx from first principles.

(a) By drawing diagrams, convince yourself that

lim
xÑ0

sinx

x
“ 1 and lim

xÑ0

1´ cosx

x
“ 0.

(b) Using the addition formula for sinpa` bq and the laws for manipulating limits, use the
definition of the derivative to derive d

dx sinx “ cosx.

2. In the lecture we saw a counterintuitive function, the Weierstrass function, which is contin-
uous everywhere but differentiable nowhere. In this question we’re going to explore another
counterintuitive function, called the cantor function or the Devil’s staircase. We will
consider this function f : r0, 1s Ñ r0, 1s.

Figure 1: Cantor’s function on r0, 1s
Credit: users Theon and Amirki, wikimedia (CC license).

To construct this function fpxq, we express x in base 3. After the first 1 in x we swap all
remaining digits by 0. Then we replace any 2s with 1s. We then interpret the result as a
binary number.

(a) What is fp0.8q?

(b) What do you notice about the derivative of f?

(c) Let S be the set of points x P r0, 1s where f is not differentiable at x. Explain how to
demonstrate that S is a countably infinite set.

Topology

3. In the last lecture we saw that coffee cups and doughnuts can be continuously deformed into
each other. For each of these pairs of objects, decide if they are topologically equivalent

(a) A coffee cup and a ring.

(b) A coat hanger and a hula-hoop.

(c) The letter B and the letter Q.

(d) The letter A and the letter P .
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Number Theory

4. In the course we saw a trick to show that the square root of 2 is irrational. We’re going to
broaden this argument.

(a) Using a similar strategy to in the lectures, prove that the square root of 3 is irrational.

(b) Let n P N be any number which is not a cube. Show that 3
?
n is irrational.

(c) Let n P N be any number with n ‰ mk for m P N, k P N, k ě 2. Show that k
?
n is

irrational.

5. Earlier in the lectures we used modular arithmetic to compute the last digits of large numbers.

(a) As a warm up, compute
6437 mod7.

(b) Compute the last digit of 20272027.

(c) You might have noticed a pattern above. Using this, compute the last digit of 20272027
2027

.

(d) How about 20272027
20272027

?

Series

6. (a) Consider the infinite series

S1 “ 1´ 1` 1´ 1` 1´ 1` 1´ 1` . . . .

This series diverges, so normally we don’t allow ourselves to assign this series with a
value. However, under certain circumstances we can try and assign these sequences
with values. Use an argument by manipulating S1 to find a value for the series. This
series is called Grandi’s series.

(b) Using a similar trick, assign a value to the divergent series

S2 “ 1´ 2` 3´ 4` 5´ 6` 7´ 8` . . . .

(c) Using the two results above, find a trick to assign a value to the divergent series

S3 “ 1` 2` 3` 4` 5` 6` 7` 8` . . . .

This process is sometimes called Ramanujan summation, and it also appears under
the guise of analytic continuation for the Riemann zeta function. Remarkably, the
expression for S3 appears sometimes in string theory, where this result is actually used.

Linear Algebra

7. For this question we’re going to treat some complex numbers like a vector space over Q.
Consider the set

Qris “ ta` bi : a, b P Qu.

(a) The space Qris is a vector space. It is 2-dimensional, meaning that it needs two numbers
to specify a point. For that reason we’ll take a as our first coordinate and b as our second
coordinate. Using this coordinate system, express (i) 1 (ii) i (iii) 2`3i as column vectors
in this vector space.

(b) Suppose we take a complex number a ` bi and multiply by i. This is a linear map
f : Qris Ñ Qris. Using the coordinate system above, express this linear map as a matrix.

(c) What is the determinant of this matrix?

(d) Now write the matrix representing multiplication by 2. What is the determinant of this
matrix?
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8. Let A be the matrix given by

A “

„

3 ´4
1 ´1

ȷ

.

(a) Use induction to show that

Am “

„

2m` 1 ´4m
m 1´ 2m

ȷ

.

for all m P N.
(b) Hence express Am linearly in the form

Am “ I `mB

for some matrix B.

Algebra

Definition 2.
Let pG, ˚Gq, pH, ˚Hq be groups. A homomorphism ϕ is a function ϕ : GÑ H such that

ϕpg1 ˚G g2q “ ϕpg1q ˚H ϕpg2q.

If ϕ is also a bijection from G to H, then we say that ϕ is an isomorphism.

9. For each of these functions, determine whether or not they are (a) homorphisms (b) iso-
morphisms.

(a) The map ϕ : pZ4,`q Ñ pZ8,`q with

ϕpxq “ 2x.

(b) The map ϕ : pZ4,`q Ñ pZ8,`q with

ϕpxq “ 2x` 1.

(c) Let R be the set of rotations of the square, with R “ tρ0, ρ1, ρ2, ρ3u. Furthermore let

A “

„

0 ´1
1 0

ȷ

,

and define another matrix group S where

S “ tAn : n P t0, 1, 2, 3uu .

Let ϕ : RÑ S with
ϕpρkq “ Ak.

Definition 3.
The kernel of a homomorphism ϕ : GÑ H is the set

kerϕ “ tg P G : ϕpgq “ idHu.

10. Let ϕ : GÑ H be a homomorphism. Using the definition of the kernel above,

(a) Prove that kerϕ is a subgroup of G.

(b) Prove that ϕ is injective if and only if kerϕ “ idG.
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