
Applied Mathematics

Online Course

Keenan J. A. Down

Summer 2024

1 Applied Mathematics at University

1.1 Welcome!

Welcome to the Downing College Summer Program 2024! I’m going to be teaching you all some
applied mathematics over the next couple of weeks, and I’m super excited that you’re here to join
me.

Over the next two weeks we’re going to try and develop some mathematical background to help
you study on other courses over the course of the summer school. Many of the subjects you might
want to study might make use of this material, and we’ve worked together to help provide a basic
mathematical foundation for the other subjects.

Over the course of the next two weeks we’re going to look at a broad variety of topics, from
programming, to data analysis, to mathematical modelling. Here’s a rough outline of the structure
of the rest of this course:

1. Applied Mathematics at University

2. Introduction to Python

3. A Bit More Python

4. Distributions and Data

5. Hypothesis Testing

6. Exploratory Data Analysis

7. Simulation and Hacker Statistics

8. A very brief introduction to Machine Learning

As you can see, we’re going to lean heavily into the kinds of skills that you might find useful
moving towards university study. Quite a lot of the course is focused on helping you develop a
small amount of fluency with Python, a leading programming language. Most research these days
is performed using code, and python is one of the most celebrated and widely used programming
languages available today. It’s also free to use.

Starting at the beginning, we’ll explore some foundational topics when working with data, de-
veloping some intuitions for working with the code. We’ll then move towards statistics from the

1

programming perspective, before looking at some really modern ideas in data. Along the way we’ll
explore a few additional topics to help supplement your study in the other courses.

Let’s get started!

1.2 How can mathematics help me at university?

Being mathematically literate is incredibly important in the modern world, and it’s never too late to
develop some more mathematical skills. This is especially true if your main area of study at university
isn’t highly mathematical - that is, if you do something besides STEM. Having good data literacy gives
us additional skills to understand lots of confusing modern phenomena - the AI boom comes to mind.
What exactly is a neural network anyway, and why do they suddenly seem to be everywhere?

Even if not for yourself, learning to apply mathematical skills, reason with data, and explore trends
will give you lots of new tools for exploring your own subject.

- Mar’s project - exploring data in psych and art? politics/economics?

1.3 Mathematics at university

Learning mathematical skills at university is very different to the kinds of mathematics you might
have done in school thus far. At school, lots of mathematics is very formulaic - learning a method to
apply to a very specific kind of problem. Often this goes so far as to learning the approach for every
different variation on a given class of problems (you might know, for example, three different ways
to solve a quadratic equation).

At university, this kind of structure is turned a bit onto its head. Mathematical study might start
with quite a lot of structure, but over the course of your programme, you’re likely to notice that
questions become much more open-ended, freeform and exploratory. This is true more or less im-
mediately for mathematics students - if you study mathematics as your main subject at university, the
main goal is to develop a feeling for the art of problem solving. That is, you might be given many
slightly ambiguous questions, and often be asked to determine an answer without any fixed method
in particular. This is very classic for maths students - luckily the rest of us are spared this toil until
later into the course!

Depending on what area you go into at university, you’re likely to learn mathematics quite dif-
ferently. For people studying science, technology or engineering subjects, especially the very math-
ematically heavy ones such as Physics and CompSci, you’re likely to encounter a first-year/first-term
mathematics course. In that course you’re likely to learn about some analysis - that is, a slightly
more rigorous introduction to calculus, the mathematical study of change, and some statistics and
mechanics relevant to your subject. Regardless of what you do, you’re unlikely to be able to escape
studying calculus, and if you’re lucky, you might even get to do multivariable calculus (lots of fun).

If you choose to do mathematics, or follow a more pure-mathematical thread through your uni-
versity life, you’re likely to study mathematics in a very rigorous way. You might see, for instance,
mathematics classes being taught as a sort of collection of facts or statements, which might look like
this:

Theorem 1 (Pythagoras’ Theorem).
Given a right-angled triangle with sides a, b, and hypotenuse c, we have

a2 + b2 = c2

Proof. The proof is left to the reader.

In more formal mathematical education, you’ll often find that you’re presented with these state-
ments and definitions and asked to learn them and their proofs (that is, a series of steps justifying why
they are correct). The thinking is, by studying results and proofs carefully and often enough, you’ll
learn how to construct interesting results and produce correct proofs when you explore the subject
more on your own.

2

In more science/engineering subjects, you’ll much more likely find that the ”proofs” are omitted,
taking only interesting results to benefit the other material that you’re going to learn.

In a science discipline, you’re likely to encounter a lot more statistics along the way, often aided
by statistical software like SPSS or RStudio. It is quite common in modern scientific research to forego
statistical software for statistical testing using a programming language (like Python or R). Python, in
particular, is very heavily employed in many disciplines these days and is a great starting language
for almost anyone to learn.

Figure 1: IBM SPSS, the R programming language, and the Python programming language.

For example, if you want to demonstrate that a drug is actually making a significant intervention
against a certain disease (and actually has an effect), you’re going to want to be able to compare the
results between the control group and the intervention group. Performing a valid statistical test will
tell you whether or not the difference between the two groups actually exists, or if it’s more likely that
it’s being caused by just random noise. For this reason, don’t be surprised if you take a psychology
class at university and suddenly find yourself in a statistics class!

Overall, you’re likely to find that mathematics at university feels much more open-ended than
in school. You won’t be given a method to solve every possible version of a problem that you’re
possibly going to see. Instead, it’s far more important to develop a generalist and broad-ranging
understanding of the problems itself and reasonable mathematical approaches you might take, so
that you are able to reason for yourself and solve unseen problems.

A large part of this means that, very often, you’re going to find yourself in a situation where you
don’t know how to solve a problem. You might realise you don’t know something as well as you
thought, or you simply have no idea why the numbers aren’t coming out right. This is part of the
experience when you come to using mathematics at university, and, most importantly, you shouldn’t
panic when this happens! Just like when look at a page of a book in a foreign language, you don’t
panic because you don’t understand, you shouldn’t panic when you come across problems you don’t
immediately know how to solve - instead, you take a deep breath, accept it might take some time to
wrap your head around it, and get to work learning the language. Before long, a lot of it gets a lot
easier - but that experience will never completely go away.

1.4 Mathematics for your career

Surprisingly, mathematical skills are more in-demand than ever, yet so many people don’t feel com-
fortable with their numerical skills. As mentioned, lots of people experience a sort of maths panic,
where they freeze, decide they’re not a ”maths person” and then move on while trying to avoid it for
the rest of their life.

This is a real shame - mathematics is really the study of patterns, and humans can’t help but see
patterns in everything! So, unsurprisingly, when you’re able to spot patterns in your work and use
the mathematics to really state the pattern carefully, this can be really valuable to your business and
your career.

This can be relatively simple things, like creating a model for predicting how much stock a busi-
ness still has, to complicated data-driven models for difficult forecasting problems. Individuals who,
at the very least, aren’t afraid of using mathematics to think about business problems tend to be highly
valuable, especially if they’re also good at communicating that information to a business audience
(which might be rather general).

Increasingly these days we find AI and Machine Learning (ML) are becoming ever-present in
our tech. Everything from the prediction engine powering your phone’s autocorrect, to your spotify
recommendations, to enormous, gargantuan language models like GPT-4, Claude 3 or Gemini Ultra.
What these models do is, essentially, allow us to capture patterns in data (be that text, similar listening

3

Figure 2: Pareidolia is the natural tendency to perceive patterns in stimuli where the pattern does
not exist. Humans are hard-wired to search for meaning in things, even if it isn’t really there.

habits, or all of the text in the internet) and make use of those patterns to reap enormous economic
benefits.

If you can get a foothold in the work of ML, it can take your career very far very quickly, as
many organisations these days are looking to expand their use of AI to maximise growth. As such,
lots of routes have opened in recent times to enable individuals to move into tech, even if they’ve
worked in different areas previously. For example, there are now a collection of courses called ”AI
Bootcamps”, where individuals, usually having achieved at least a BSc before, go to learn (usually
online) about machine learning models and data science for 6 weeks or so. Many of these courses
also offer career guidance at the end of the programme, giving even more help for individuals to get
into a data-centric career (which, by the way, tend to be very lucrative - the average data scientist,
according to Glassdoor at the time of writing, earns 52,000 pounds in the UK).

Most of this course is going to be directed at learning about how to think of mathematics as a tool
for studying data. That might be data from research, or more broadly for business. As such, we’re
going to explore some of the basic ideas behind this data-science approach. Regardless of what you
take away, a lot of the content you learn here could be useful for your future career (if you’re willing
to apply it!).

1.5 Projects across disciplines

Lastly, it’s worth mentioning that there are many areas where we can use applied mathematics to
create interesting artistic works. For example, if you haven’t heard of DALLE-3 [7] or Midjourney
(or even Sora [8], which was announced two weeks ago at the time of writing), then you’ve been
missing out on some of the most bizarre generative technology that humans have ever created. For
example, here are some pictures that DALLE-3 generated when I provided it with a prompt.

4

Figure 3: ”Please make a picture of a polar bear wearing a suit, walking through Downing College,
Cambridge. His suit is inspired by the striped pattern of a bee.”
”Could you now make a picture of a fashionable unicorn wearing a crown studying applied mathe-
matics at the Downing College Summer Programme?”

While these particular examples are somewhat mortifying, models like DALLE-3 and Midjourney
are incredibly powerful and can be helpful for producing graphics in scenarios where the need for
human-produced art is relaxed somewhat, like in presentations or background art on a website.

Two more artistic projects that have come out of work taking place in the Cambridge Conscious-
ness and Cognition Lab (my main lab) are Synch.live [12] and Latent Ecologies of the Mind [9]:

Synch.live

Synch.Live was an artistic and scientific exploration of how humans feel more connected when they
exhibit emergent behaviour. Individuals were placed in a dark room wearing flashing hats and given
the task, as a group, to get the flashing of the hats to sync up. To achieve this, they used a measure Ψ
reflecting emergence [11]. As this number increased, the synchronicity of the flashing also increased,
giving the players a goal of acting as an emergent group (without explicitly mentioning this goal).

5

Successful groups developed ”flocking” motions, where the centroid (centre point) of the group
mass was more predictive of the group’s behaviour than the parts added together [12].

Latent Ecologies of the Mind

In this project, electroencephalogram (EEG) was used to record brain activity from two people lis-
tening to ‘L’ile Neu’ by Hikaru Hayashi [9]. The signals were then decomposed.

After some processing, the two signals are then convolved to create a single signal, representative
of an ecotone between two minds (a sort of transient state between biological systems).

From here, Lempel-Ziv Complexity (LZc), a standard measure of complexity which can be ap-
plied to brain signals to take a rough measure of someone’s consciousness level, was applied to the
convolved signal.

By considering how the LZc varied with time and with delay between the two signals, a 2D
surface was created to represent possible complexities. This was then fed to a diffusion model to
produce a visualisation of their joint ecology [9].

The results are visually very interesting!

6

Figure 4: A derived ‘landscape’ of complexities across time and delay, and the output of the diffusion
model when provided the landscape as a starting point.

As you can see, there are lots of new and emerging avenues where a little knowledge of applied
mathematics can take you in research, art, science, and technology. Many of these new avenues are
building on new technologies such as large language models and diffusion models.

In this course we’re going to learn a bit more about just how beautiful data can be. I hope you
enjoy the course!

7

2 Introduction to Python

In the hopes of helping you to get hands-on with data, we’re going to learn a little bit of program-
ming. Python is a high-level object oriented programming language. High-level means that it’s great
for abstracting difficult tasks away from system-level functionality, so you don’t need to know very
much about the machine where the code is being run. Object-oriented programming is also about
abstraction; an object-oriented programming language will be structured around various objects or
data structures. With Python, it’s especially easy to build structures and objects which you can later
use to better manage and structure your code. Furthermore, python is free to use and widely used in
industry - it’s probably one of the most in-demand programming languages you could learn, so it’s a
great place to start.

As we spoke about yesterday, learning to program is one of the most useful skills you can have
in the modern world. Almost all of the technology that you encounter every day is built with code,
and python, with its relatively mild learning curve and intuitive syntax, is very widespread. Without
further ado, let’s get started.

2.1 Getting Started

We’ll start by installing Python onto your device. Go to

https://www.python.org/

and go to Downloads, and install the current version of python onto your device (3.12.2 or later).
There’ll be lots of help on how to do this online, and it’ll depend slightly on your operating system.
During the installation, make sure that ”add python.exe to PATH” is ticked, as this will make it easier
to use from the command line.

Some UNIX distributions (MacOS and Linux) have a version of Python pre-installed, but you
might want to follow the above steps to just make sure it’s up to date anyway.

There are a few different ways you can run python. We’re going to heavily prefer the last of these
three options, but it’s worth knowing regardless.

2.1.1 At the command line

When you install python, the installer normally adds python to the PATH when you use a command
line tool like Command Prompt (Windows) or Terminal (MacOS, Linux). This means that you can
use the python interpreter (python.exe, the executable file that runs code) by using python at the
command line.

On Windows you can open the command prompt quickly by running windowskey+r Typing in
cmd and hitting enter will then open up an instance of the Command Prompt.

Alternatively you can find it in the start menu or by searching in the task bar.
You’ll notice that once you’ve opened it, you will have a blinking cursor in a line which contains

the name of a directory. Here it was ”C:\Users\Stephanie”. This is the current working directory,

8

and reflects the ”location” you’re currently accessing using the command prompt. The current work-
ing directory will affect what your code is able to see. If you need to change it, you can use cd to
navigate to a folder, or cd .. to navigate up one level (out of the current folder). You can use dir
in Command Prompt or ls on MacOS/Linux (UNIX systems) to see the files in the current working
directory.

This might be useful later. For now, you can simply type python in any directory to start the
python interpreter in interactive mode. This will prompt you to enter python code (after the > > >),
and you can explore basic python code by sending one line of the code at a time.

Here, the first line of code we sent was print("Hello world!"). The print function takes a
string as input (i.e. a piece of text, usually provided with ”” or ”), and prints it out to the command
line. Naturally print is very useful for following the behaviour of complicated python code.

You’ll notice that Python can, by default, do the standard mathematical operations (+, -, * and /),
and in interactive mode, it usually automatically prints the output of the last line of code.

9

Most of the time it won’t be particularly neat or helpful to run code at the command line in
interactive mode, as you won’t be able to save your code easily, or make changes quickly to what
you’ve written. One other way of using the command line for running python is via scripts.

2.1.2 Scripting and running the code

Often times it’s much more convenient to collect the code you write together into a file called a
script, which is simply a text document containing the code which you can run later.

To do this, you’ll usually want to use a code editor or IDE (integrated development environment)
to give you somewhere to write it. While in principle it’s possible to write code in Notepad or
TextEdit, developer tools often make writing code much easier, as they often provide suggestions
for corrections or completions for standard functions (often like auto-correct, but for code). My
current default choice on windows is VSCode (Visual Studio Code), which you can install free at
https://code.visualstudio.com/. It’s also available for MacOS and Linux.

Here I’ve clicked on New File... and given the new file the name my_script.py. Pressing
enter, you might also get a dialogue box asking you to choose where to place the file. Ensure that
the file name ends in .py, as this is the extension for python scripts.

Here we’vewritten a short script (and saved it using crtl + s). You’ll notice that VSCode actually
has put some blue squiggly lines under some of my code. This is just because it doesn’t conform

10

to normal programming standards (which is more for people who work at software companies like
Google etc. who need to keep very standard code). For our purposes this doesn’t matter!

The script will print out two lines. The first one will say ”This is my script.”, and then the second
one will say ”My favourite animal is Elephant”. Note that in Python, we can concatenate two strings
using +.

While it is possible to run the code directly inside of VSCode (see run and debug on the left hand
side), we’re going to try running the code form the command prompt.

Open your command line app once again. Find the complete filename of your code (with all
parent directories) ”C:/Users/.../my_script.py”. We’re then going to run

python "<your file directory>"
As you can see, this runs the code in our script line by line, producing the output we were

expecting1.

Running python scripts this way can be incredibly useful, especially if you need to perform calcu-
lations on a remote server or autonomously. Much of my research takes place on a High Performance
Computing cluster - essentially a supercomputer - and as they have no graphical interfaces, all code
is run like this.

This is great, but what if we want to go back, change around some things, try the script again,
and so on? It’s not always incredibly effective to jump back and forth from the script to the terminal.
Moreover, it makes it quite hard to convey interesting results with text - and it’s not easy to convey
a story with our code. For that we’ll turn to our last, mostly preferred, method.

2.1.3 Running code in Jupyter Notebooks

A Jupyter Notebook is a file which is able to do two things: run code and display normal text. For
that reason, they’re often very useful when you want to dip in and out of your code, or want to be
able to take notes about what you’re doing.

They’re also a relatively common format online for sharing work on small challenge projects. For
example, if you work on a challenge project on kaggle.com, you might create a Jupyter Notebook to
walk people through your code.

Jupyter notebooks are quite easy to set up. When you installed Python, you also installed a
command utility called pip, which stands for ”Preferred Installer Program”, or ”PIP Installs Packages”
if you’re feeling meta. A package is a collection of scripts calledmodules which you can import and
re-use. For example, if you want to use python to work with data, you’re likely to use the package
pandas, which we’ll meet later.

1If you’re wondering who Stephanie is, I have no idea - the university lent me this laptop when I was having some problems
with my own!

11

We’ll come back to importing modules later. For now we’re going to use pip to install Jupyter
Notebook. To do this, go to the command line and perform pip install notebook. When you do
this, make a note of the directory you see at the command line. Ours was ””

Once you’ve finished installing it, you can open Jupyter Notebook by running jupyter notebook
at the command line. Once you do this, your default web browser will open and you should be
greeted with a page like this:

What you’ll see is a navigation window for all of the files inside of the current working directory
where you ran jupyter notebook. You won’t be able to access files higher than your working
directory, so set this accordingly (see subsection 2.1.1).

Now you can find a desired directory, go to New and then IPython 3 (it might also just say Python
or something similar). This should make a new jupyter notebook that looks like this:

You can change the title by clicking on the Untitled at the top of the screen, and you can save

12

the file under File > Save and Checkpoint.
What you see is a box, called a cell, where you can write code. To execute the code that’s in the

cell, you can press shift + enter. Any output from the code will appear at the bottom of that cell,
and you’ll move into a new cell.

To make more cells, you can either shift + enter after the last cell, or you can click on a cell
(it’ll turn blue - green means you’re editing a cell) and press a to create a new cell above the previous
one, or b to create a new cell below. You can click on a cell and press d twice to delete a cell.

In addition to being able to run code, however, you can also write text. Making a new cell,
selecting it, and pressing m will make it a Markup cell, which means that it will output text. Markup
is a markup language which makes it easy to make nice looking documents. For example, in markup,
this is what the following cell looks like when it is ”run”:

Hopefully you can see how Jupyter Notebooks can be useful for organising ideas or experimenting
with new pieces of code. They’re especially good for data analysis, as they allow you to keep all of
your ”storytelling” in one single place - your code, your analyses and your insights. We’ll make lots
of use of Jupyter Notebooks for the rest of this course and you’ll learn to use them to analyse data.

If you have issues installing any of the software, a quick google search should help you - there
should be lots of material online for how to install python and Jupyter notebook. If all else fails,
ChatGPT might be able to give you some ideas!

2.2 Basics in Python

2.2.1 Variables and Comments

Variables

Let’s get into actually using the language now. In most programming language, variables are short-
hand representations of data. They contain data and store it so that it can be used again (or sometimes
changed) later. Let’s define some variables.

my_name = "Keenan"
my_age = 26
my_height = 1.83

print("Hi, my name is " + my_name + "!")

>> Hi, my name is Keenan!

13

In the code above we defined three variables, my_name, my_age and my_height, all of which
store different kinds of information. We can use that information again later. For example, if we have
a variable which contains text, then we can use print to produce that variable as output. When we
have two strings, we can use + to concatenate them, which gave us the output above.

Comments

A really good habit when programming is to use comments. These are small pieces of text which
help developers and other people using the code to understand what it does. In Python, we make
in-line comments using #, which means that anything on the line after the # won’t form part of the
code, but can be read to help you (and others) understand what the code does. It’s good practice to
use lots of comments - enough so that someone who hasn’t read your code before can understand
what it does easily. Good comments speed the process of programming up enormously.

For example:

This will not be read by the program.
text = "This will be read by the program."

x = 10
x = 15

print(text)
print(x)

>> This will be read by the program.
>> 10

2.2.2 Classes and Types

As we mentioned before, Python is an object oriented programming language, which means that
it places emphasis on storing information in different types of variables. These different structures
are called their type or class (the difference between the two is massively beyond the scope of this
course!)

One instance of a class is called an object. For example, ”this” and ”that” are both instances
of the string class - they are string objects. Don’t worry too much about understanding all of these
words right now. We won’t be building our own classes in this course, so you don’t need to worry
too much about it right now.

If you want to find out what class a variable has, you can use the function type, which will return
the class of a given variable.

Define my name.
my_name = "Keenan"

Print the type.
type(my_name)

>> str

Here you see that my_name has the string class, denoted by str. Let’s talk about a few different
built-in kinds of objects you’re going to encounter.

String (str)

Strings are used to contain text data, and you can specify them by using single quotes or double
quotes. If you want them to span over multiple lines, you can use three quotation marks """ or '''
to signify the start and the end.

14

my_name = "Keenan"

my_story = """I am a spy from the future,
sent back in time to teach
at the Downing College
Summer Programme."""

print(my_name)
print(my_story)
>> Keenan
>> I am a spy from the future,

sent back in time to teach
at the Downing College
Summer Programme.

String objects are immutable, which means you can’t change the underlying data after you create
the variable. Instead it will just be overwritten.

Integer (int)

Integers are just that - whole numbers. If you specify a whole number as a variable, its type will
automatically be assigned to int. Naturally you can add, subtract, multiply (*) and divide (/). You
can also do modular arithmetic with %, which will give the remainder after division. Integers are
immutable.

Float (float)

When you want to work with numbers which aren’t whole numbers, the variable will be saved as a
float. For example, 23.12 or 46.2 are both floats. The word float is short for floating-point number,
meaning that there is a decimal place. Floats are immutable.

List (list)

Python starts to get a lot more interesting when you introduce lists. A list, naturally, is a list of things.
For example, here’s a list:

Define a list
my_list = ["cat", 10, 3.141, ["dog"]]

You can get the elements of a list at the n-th entry by doing my_list[n]. Note that Python uses
zero-indexing, so to get the first element of the list, you’ll do my_list[0], and so on.

Lists can consist of any class, or even a mix of classes. It’s not uncommon to create a list of lists.
Here, the fourth entry n = 3 will be a list itself.

print(my_list[0])
print(str(my_list[1]))
print(my_list[3][0])

>> cat
>> 10
>> dog

To create a new list of a series of consecutive elements, you can use a slice.

my_new_list = my_list[1:3]
my_new_list
>> [10, 3.141]

15

Note that this is also zero indexed and won’t include the second index. This is to prevent double-
counting so that my_list[1:2] and my_list[2:3] don’t overlap.

List aremutable, and you can change a single entry by doing my_list[n] = "blah" or something
similar to change the n ´ 1-th entry.

Function (function)

You’ve used a few functions so far. These are like mini snippets of code which perform a certain
task. For example, print is a function, but there are many others. You can also define your own
functions, but we won’t cover this in this course (even though it’s really interesting!)

Dictionary (dict)

Dictionaries are a great way of organising data. Instead of trying to remember the order of pieces of
data in a list, you can use dictionaries to order data really well. They’re built out of two parts; keys
and values. When given a certain key, the dictionary will return the corresponding value.

Here’s an example:

Define the dictionary.
surnames = {

"Keenan": "Down",
"Laura": "Stolp",
"Kamran": "Yunus"

}

Print out Keenan's surname.
print(surnames["Keenan"])
>> Down

Dictionaries are incredibly convenient. You can’t use every kind of class as a key (e.g. you cannot
use mutable objects as keys), but they’re still incredibly useful for organising data.

Note that they’re delimited by curly brackets , with keys separated from their values by a colon
:, with commas separating each key-value pair.

To see what the keys and the values of a certain dictionary are, you can append .keys() or
.values() - these are two special functions attached to an object (functions attached to objects in
this way are called methods).

Thesemethods return special classes, but you can convert them back to lists by using list(surnames.keys())
if you need.

Dictionaries are mutable. They’re incredibly versatile.

Tuple (tuple)

Tuples are a bit like lists but are immutable, so they can be used as dictionary keys. You can also
use them to pass arguments to a function, if it takes multiple arguments.

16

Set (set)

Sets are unordered lists, which, much like the mathematical notion of a set, do not contain dupli-
cate elements. You can specify the elements in a set by delimiting them with curly brackets, like
dictionaries, but without the colons.

Specify my set.
my_set = {"one", "two", "three", "three"}

print(my_set)
>> {'one', 'two', 'three'}

Sets aremutable. There are a few associatedmethods like .add(), .remove(), .union(), .intersection(),
.difference(), which take elements or sets and allow you to perform usual set-theoretic operations.

Boolean (bool)

The last class we’re going to mention for now is the Boolean. A Boolean stores whether or not
something is True or False.

Later, when we mention control flow (changing which code runs depending on different condi-
tions), we’ll use boolean values a lot.

To define a Boolean in Python, you should write True or False (with the capitalisation included).
Basic logic gates can be accessed with &, | and not(). For example:

x = True
y = False
print(x & y)
print(x | y)
print(not(x))
>> False
>> True
>> False

You can also write and and or instead of & and | to make your code more readable, if you like.
Booleans are not mutable.

These classes will keep coming up again and again, so it’s good to get familiar with them. Open
up Jupyter Notebook and have a play around!

17

3 A Bit More Python

Over the course of this session we’re going to try and get a little bit more familiar with Python, so
that we can start thinking about how to apply it to data. To do this, we’ll first have to look at two key
ideas: control flow and functions.

3.1 Control Flow

3.1.1 Logic

Control flow is about howwe direct Python to execute different parts of code. For example, wemight
want to test whether or not a certain condition is true before proceeding, or change the behaviour of
the program depending on context.

The Boolean type is incredibly useful for managing control flow. Consider the following two lines
of code, and notice the difference:

my_number = 2

print(my_number == 2)
>> True

The first line is using the assignment operator =. In Python, this means that you store the data
after = in the variable which comes before. So this first line saves the variable my_number with
value 2 and type int.

The second line looks similar but is actually performing a different operation. When we use ==,
we’re testing for equality, meaning that this whole statement will return as either True or False
depending on whether or not the data stored in my_number is exactly equal to 2. In this case it is.

We saw previously that we can use & and | to reflect and and or respectively. For example, if I
want to check that several conditions are true, I could try the following:

x = 1
y = 2
z = 3
print((x == 1) & (y == 2))
print((x + y == z) | (y == 5))
>> True
>> True

Note that you should always use brackets between the operators, otherwise Python might try
and compute the expression differently (not using brackets here would give you two False outputs,
actually).

If we want to invert a Boolean (flip True to False and vice versa), we can use not():

print(not(True))
print(not(False))
>> False
>> True

There are some other logic operations that will often be useful. In addition to == we have !=,
the not equal operator. This is equivalent to not(a == b), but is often a quicker shorthand. Of
course, when we’re working with floating point numbers or integers, we also have the following
logical operators:

> # Greater than
>= # Greater than or equal to
< # Less than
<= # Less than or equal to

You’ll probably need these operations a lot!

18

3.1.2 ”If” blocks

One of the most important control flow tools is the if clause. This checks that a certain statement is
true, and if it is, runs a select window of code. Let’s see how it looks on an example involving two
cats:

Specify Gerald's age.
age_gerald = 17

If Gerald is old, print "Gerald is old".
if age_gerald >= 10:

print("Gerald is old!")

Specify Belle's age.
age_belle = 9

If Belle is old, print "Belle is old".
if age_belle >= 10:

print("Belle is old!")

>> Gerald is old!
>>

You can see here that the program only ran the code that printed ”Gerald is old”, because his age
satisfied the conditions. The program didn’t print anything out about Belle, because the statement
wasn’t satisfied.

What if we want to test several conditions and return the first piece of code where the condition
is true? Then we can use elif and else. The elif token is short for else if. This code will run if
all of the statements in the if block before it did not already execute and a given statement is true.
At the end of the chain, we have the else token, which describes what should happen in all other
cases. Here’s the syntax:

if STATEMENT_1 :
CODE TO RUN IF STATEMENT_1 IS TRUE

elif STATEMENT_2 :
CODE TO RUN IF STATEMENT_1 IS FALSE AND STATEMENT_2 IS TRUE

elif STATEMENT_3 :
CODE TO RUN IF STATEMENTS 1 AND 2 ARE FALSE AND STATEMENT_3 IS TRUE

else:
CODE TO RUN IN ALL OTHER CASES

This is a great way of managing several complex logical cases while keeping your code relatively
short. You can also chain if several times.

Two important reminders - don’t forget the colon! This will cause your code to throw an error,
as it won’t know where the loop begins. Also, notice that there is an indentation inside of repeated
blocks of code. This indentation is important to get right in python - not getting the spacing right will
mean it doesn’t always understand where a block of code begins or ends, and you’re likely to get a
SyntaxError.

3.1.3 ”While” loops

Often times you don’t want to repeat yourself. Not only is repeating code ugly and hard to read, but
sometimes you don’t know how many times you’ll need to repeat a certain block of code. Not only
that, but if you copy and paste code multiple times, you risk introducing copy-paste errors, where
you don’t spot the bug in a piece of code when using it in a new context. This idea is so important
in software development that there is an acronym, DRY, for Don’t Repeat Yourself, which is one of
the most upheld principles of writing good code.

19

Loops are one of the easiest ways you can avoid repeating yourself. A loop is exactly that - a
piece of code over which the program loops, repeating it until a certain condition is satisfied (or
occasionally, indefinitely).

While loops are the simpler of the two standard loops in Python. For as long as a certain statement
continues to be true, they will run the designated output. Here’s an example, where we specify a
number, and perform a piece of code printing the square2 of that number until it is sufficiently large.

Initialise the variable.
n = 1

Start the loop.
while n <= 10:

Print "n squared is .."
print(str(n) + " squared is " + str(n**2) + ".")

Increase n by one.
n = n + 1

>> 1 squared is 1.
>> 2 squared is 4.
>> 3 squared is 9.
>> 4 squared is 16.
>> 5 squared is 25.
>> 6 squared is 36.
>> 7 squared is 49.
>> 8 squared is 64.
>> 9 squared is 81.
>> 10 squared is 100.

It’s important when using a while loop that you don’t accidentally create a runaway program. If
you don’t remember to increase n by one each time here, then your program will run as fast as it
can, indefinitely repeating ”1 squared is 1”, which, if nothing else, just makes you feel a bit sorry for
your computer.

By the way, you can also write n += 1 as a shorthand for n = n + 1.
While loops are fast, but it’s definitely possible to create accidentally infinite while loops. If this

happens, your whole program will never stop, and it will eat up lots of your computer’s memory.
Because of this, often it’s easier (and safer) to use the other main loop provided in Python.

3.1.4 ”For” loops

The for loop is a very useful tool in Python, as it helps us avoid having to worry about how many
times we need to loop through a block of code. Often when we repeat some code, we want to do
it for every element in a list, or for each letter in a string, or for every x in some y. In this case, so
long as the y is a kind of object called an iterable, then we can ”iterate over” y and repeat the code
for each thing in y.

This sounds a bit abstract, so let’s give an example. Suppose we have a list of numbers, and for
each number in the list, we’d like to print the square of that number

Initialise the list of numbers.
numbers_to_square = [1, 2, 7, 3, 6, 9]

Loop over these numbers.
for number in numbers_to_square:

print(str(number) + " squared is " + str(number ** 2) + "!")
2Note that ˚˚ means exponentiation in Python - using the caret � doesn’t give the right behaviour here!

20

>> 1 squared is 1.
>> 2 squared is 4.
>> 7 squared is 49.
>> 3 squared is 9.
>> 6 squared is 36.
>> 9 squared is 81.

When running a for loop, we pass an iterable object which we’d like to loop over and give a
name to the variable which will be changing as we pass through the list. Then comes the block of
code to be executed using this variable.

The syntax is this:

for ITEM in ITERABLE:
<Do something with ITEM>

Here’s another example.

Create a set of things.
my_favourite_things = {"cats", "dogs", "cupcakes"}

Loop over these things
for favourite_thing in my_favourite_things:
print("I really like " + favourite_thing + ".")

>> I really like dogs.
>> I really like cats.
>> I really like cupcakes.

You’ll find for loops to be an unquestionably powerful tool for working with long lists of data.

3.2 Modules, Libraries and Packages

3.2.1 Modules

Often when programming you’ll want to re-use code that you wrote at an earlier point. For example,
you might write a function in one script and then find that you want to re-use that function in a
different script. Naturally it doesn’t make a lot of sense to copy and paste the definition of that
function from the old script to the new script, so, in general, we make use of import to make use of
code from another script.

If you have another file in your directory which is a python script ending in .py, you can run
all of the code in that script while running code in the main script. Suppose we run a piece of
code called my_script.py which imports a file called my_functions.py. Then all of the code
in my_functions.py will be executed at the point of import, making all of the functions and ob-
jects defined in my_functions.py available when running my_script.py. How do we do this? In
my_script.py you can simply write:

import my_functions

Note that you do not need to include the .py at the end of the import. Suppose that my_functions.py
contains the following code:

def print_name(name):
print("My name is " + name + "!")

In the same folder we run our script my_script.py which contains the lines:

21

Import the code from my_functions
import my_functions

Print out my name
my_functions.print_name("Keenan")

>> My name is Keenan!

Note that the code that we importedmoved the name of the function to ”my_functions.print_name”.
This is the usual behaviour when using import, because otherwise we would run the risk of import-
ing a function or object which has the same name as something already in our code. If you want to
circumvent this and import the function with the exact same name, you can use:

from my_functions import print_name

This will make the function print_name available as-is in your code, without having to worry
about remembering which script it came from. A single file from which we import code is called a
module. In this case, we imported the my_functions module so that we could access the function
that was stored inside.

When you’re working with code in a large project, you’re likely to have a large collection of
modules which you might need to access. The entire body of code in your project is called a library,
consisting of many different modules of code.

3.2.2 Packages

Often it’s incredibly useful to access code that someone else has already written. There is an enor-
mous number of open-source projects which we can access, giving us access to lots of incredibly
useful code that will speed up your workflows enormously. To see this, we’re going to access two
important packages called pandas and NumPy.

You might remember that we already used a tool called pip to install Jupyter Notebook. When
we did this, all we had to do was go to the command line and type pip install notebook.
When we did this, we were actually looking up the project named notebook from a remote col-
lection of projects called the Python Package Index, PyPI [2]. You can find out more about it at
https://pypi.org/.

Navigate back to your command-line by re-opening Command Prompt or Terminal. From there,
you can install the pandas and numpy packages by running these two commands, and responding
yes (y) when prompted.

>> pip install numpy
>> pip install pandas

You don’t need to navigate to a particular directory - the packages will be installed for you in
the correct location (which will be either for all users or local to you, but either way you should be
able to access it). In actuality, the pandas package is built on numpy (i.e. pandas has Numpy as a
dependency), so installing pandas should also automatically install numpy, but we’re being explicit
with it here for now.

A quick note: when you get further into your programming careers, you might find that you
need to install lots of different packages for different projects. Having a lot of packages installed
can sometimes cause problems, as they might interact with each other in ways that you were not
expecting. To get around this, you might consider managing your packages into different environ-
ments. An environment is a collection of different packages which you can load and unload, so that
those loaded packages act as if they are installed, and the unloaded ones will not. One of the best
package and environment managers is Anaconda, which you can install online at https://www.ana-
conda.com/download. We won’t go into managing environments much here, but know that in
general it’s good practice to use them if you’re working on large projects or want to become a better
developer.

Next time we’ll be getting hands-on with using numpy and pandas to explore around with some
data. See you all then!

22

4 Distributions and Data

When working with data, we often find that we want to answer questions. In an optimal world, we
should operate by taking our assumptions, formulating a statement about what we think might be
true about the data, and then we see whether or not the data supports the truth of our statement.
Over the next couple of lectures we’re going to learn how we can use data to answer these kinds of
questions.

Working in this way is the mathematically optimal way to do so, but it’s not always the most
convenient. Indeed, we don’t go through our daily lives formulating hypotheses about every fact in
our waking world, and then searching for data to confirm or negate them. However, when working
in a scientific, academic or business capacity, we have to make sure that the patterns we think we
see actually exist, as humans are especially susceptible to seeing patterns which are not, in reality,
present.

There are many reasons this can happen. If you look hard enough at a collection of data for long
enough, it’s always possible to construct some kind of narrative trend in the data. For that reason,
rather than looking at the data and finding a narrative trend, you should locate a narrative trend first,
and then find some new data to confirm it.

The narrative you construct hinges implicitly onwhat information you think have about theworld.
When you write down the information you think you have, what you’ll find is that it should describe
a distribution that you should see in the new data.

4.1 Distributions

A distribution in statistics is a mathematical model which represents the expected frequency with
which you observe certain events to occur. For example, if I take a random sample of the world’s
men, I’ll notice that the vast majority of them are close to average male height, and far fewer people
are very tall or very short.

There are two broad classes of distribution - discrete distributions and continuous distributions.
A discrete distribution usually reflects the probability of a finite number of possibilities - if I roll a
die, say, then there are exactly 6 outcomes which we can observe. Each of these probabilities can
be thought of as representing the expected amount of times we’d expect to see that outcome if we
rolled the dice repeatedly. We can then specify the distribution by specifying the probability of each
outcome x of the variable X:

p(X = x) = 1/6

There are a few different discrete distributions that often come in handy, but the uniform distri-
bution is one of the most frequently appearing.

A continuous distribution varies smoothly in possible outcomes. For example, if we measure the
heights of different people, the possible numbers we could get as output can vary smoothly. If you’ve

23

done much statistics in school already, you’ll likely have met the normal distribution, which is the
most commonly occurring distribution in nature. We’ll briefly discuss this distribution again here,
and then we’re going to try and look at, model and experiment with data. To do this, we’ll use three
packages: NumPy, Pandas and Matplotlib.

4.1.1 The Normal Distribution

The normal distribution, also called the Gaussian distribution, is one of the most frequently occurring
distributions in nature. Suppose that we, as above, take a large sample of people and look at their
heights. We’re going to plot the probability density function of the normal distribution for men’s
heights. This is essentially a curve which describes how common it is for men’s heights to be around
a certain value. The total area under the curve is equal to 1, reflecting all men, or 100%. The
probability that any given man’s height is less than 170cm is given by the area of this shaded region:

The average height is given by 178.4cm, and another number, the standard deviation σ, is 7.6cm.
This number represents how spread out the data is; the larger the standard deviation σ, the more
variance in height there is among men. If it were very small, then nearly every man would have a
height very close to 178.4cm.

While you don’t need to remember it, the equation of the curve for this distribution (the probability
density function is given by

f(x) =
1

?
2πσ2

e´
(x´µ)2

2σ2

where σ is the standard deviation and µ (mu) is the mean. Data can have lots of different kinds of
distributions, but this one is the most common one you’re likely to see in nature. We’ll stick with it
mostly for now, but we’ll take a look at how we can think about more complex distributions later
on.

4.1.2 A brief recap

Just in case you haven’t met the standard deviation yet, it is a measure of how spread out the data
is, and when we’re looking at the entirety of a population, it is given by

σ =

d

řN
i=1(xi ´ µ)2

N

Where N is the size of the population and µ is the population mean. If we want to estimate the
standard deviation of a population from a sample, which is more often the case, then this formula

24

gets you closer to the actual value:

s =

d

řN
i=1(xi ´ µ)2

N ´ 1

The square σ2 is also known as a variable’s variance3.
We would not expect that the variation in the weight of people is at the same scale as the variation

in weight of 1kg bags of sugar, and the standard deviation gives us a number with which we can
compute this ”scale of variation”.

4.1.3 Computing a Z-score

In order to work out what area of the diagram is actually shaded, we usually use a helpful tool called
a Z-score. The Z-score simply normalises this distribution so that the average becomes zero and the
standard deviation becomes one. From here, there are lots of tables that tell you ”what the probability
is” of observing an individual with a Z-score less than a certain threshold.

For example, converting the height 170cm to a Z-score, we do

Z(x) =
x ´ µ

σ

and apply this to 170cm:

Z(170) =
170 ´ 178.4

7.6
= ´1.11

Looking this up in a table or online will tell you that the probability of observing aZ-score less than
-1.11 is about 13%, so only 13% of men have a height less than 170cm worldwide. As mentioned,
there are lots of calculators online to help you with this (you can also use python) - here’s one online
calculator [6].

4.1.4 Modelling with Numpy and Matplotlib

We’re now going to run a virtual experiment and see what happens if we take samples of different
sizes of men around the world, and then measure their heights. If you want to produce a simulated
sample from a normal distribution, the Numpy package can do this well. We also want to see what
we produce, so we’re going to use another package, calledmatplotlib, to plot the data in a histogram.

When we import the packages so that we can use their code, it’s common to assign them an alias
to speed up code production. To do this we write import numpy as np, meaning that whenever
we want to access the numpy package, we now only need to type np in future. We’ll also import
part of the matplotlib package (pyplot) as plt, which is also very standard4.

Standard numpy and matplotlib
import numpy as np
import matplotlib.pyplot as plt

Generate some dummy height data.
mens_heights = np.random.normal(178.4, 7.6, 100)

Create a histogram of heights.
plt.hist(mens_heights)

Show the histogram.
plt.show()

3You might wonder why we use standard deviation rather than an average absolute difference between observations and
the mean. There are a few reasons; firstly, the standard deviation is smooth and nice to differentiate. Secondly, variance
seems to be the natural choice, as it is additive when we add independent variables together (e.g. Var(X + Y) = Var(X) +
Var(Y)).

4Most of these import aliases are pretty standardised - numpy is almost always imported as np, pyplot as plt, and pandas
as pd.

25

Here, the np.random.normal functionwill produce a certain output called aNumpy array. Numpy
arrays are a lot like lists, except that they’re computationally faster and the types of the entries have to
be the same. What we’ll get is an array of 100 data points with mean 178.4 and standard deviation
7.6, as if we’d picked 100 men at random worldwide and looked at their heights.

Then plt.hist will create a histogram out of the data, and the final command plt.show() will
show the data. In a histogram, data is grouped into certain windows, and the height of each bar
represents how many times the data point we’re observing fell inside of that window. Here’s the
output of running this code.

You can see a vague outline of what looks like the normal distribution. In reality, because our
sample size was relatively small, there’s likely to be a lot of noise in our data - fluctuations in the
distribution that are due to chance alone. If we increase now the sample size up to 10000, and break
up the histogram into more bins using the keyword argument bins = 50, then we get something that
looks a lot more like a classical distribution.

Standard numpy and matplotlib
import numpy as np
import matplotlib.pyplot as plt

Generate some dummy height data.
mens_heights = np.random.normal(178.4, 7.59, 10000)

Create a histogram of heights.
plt.hist(mens_heights, bins=50)

Show the histogram.
plt.show()

In this code you’ll notice that when we called plt.hist we also specified the number of bins
with bins = 50. This is called a keyword argument or kwarg. While most arguments for python
functions are passed according to their order (positional arguments - see for example the documen-
tation for plt.hist at https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html), you can
often specify an argument by its name, which you can find in the documentation. Here we specified
the bins argument should take the value 50 when running the function. In general it’s a good idea
to have a number of bins roughly equal to the square root of the sample size.

4.1.5 Creating nice plots

Matplotlib comes with a lot of functionality for changing the decoration of your plots to make them
more pleasing and easy to read. A good plot should always have a title, scales, and x and y-axis
labels to make the graph easier to read. Here are some options we can change.

26

Change some of the decoration.
plt.xlabel('Height (cm)')
plt.ylabel('Frequency')
plt.title('Histogram model of men's heights with 10000 samples')

Show the plot again.
plt.show()

4.1.6 Modelling new distributions

The data here is completely simulated, but it’s often useful to be able to model different kinds of data
and distributions. For example, what is the distribution of the square of different men’s heights? If,
instead of looking at the height X, I wanted to try modelling the distribution of weights among men
using the fact that I know heights are normally distributed. Suppose then that we have the model
that a man’s weight is exactly 20 times his height in metres squared. How would the predicted
distribution of our model look? We can see very easily, as NumPy arrays make this straightforward.

When we add, subtract, multiply, divide or exponentiate with a NumPy array, the result is another
array where that operation is applied to each element, so this makes it quite easy to compute other
kinds of distributions.

27

Standard numpy and matplotlib
import numpy as np
import matplotlib.pyplot as plt

Generate some dummy height data.
mens_heights = np.random.normal(178.4, 7.59, 100000)

Convert the data to metres.
mens_heights = mens_heights / 100

Work out the estimated weight according to our model.
mens_model_weights = 20.0 * (mens_heights ** 2)

Create a histogram of weights.
plt.hist(mens_model_weights, bins=100)

Change some of the decoration.
plt.xlabel('Weight according to the model (kg)')
plt.ylabel('Frequency')
plt.title("Histogram model of men's weights with 100,000 samples")

Show the plot again.
plt.show()

Print the mean.
print(np.mean(mens_model_weights))

>> 63.80661853622601

Try this for yourself and see what you get - play around with making various kinds of distributions!
Working with the data in this way can give you an idea of what even really complicated distributions
should look like if you know what kinds of assumptions are reasonable to make.

4.2 Working with data

What we have constructed is a model of men’s weights, and, quite unusually, we can see that our
model predicted the average weight was 63.8 kg, which is almost certainly wrong. How wrong?
Well, it’s time to maybe have a go at looking at some real data, rather than just simulated data, so
that we can compare our model to the actual situation. To do this, we’re going to use the other
package, pandas.

The name pandas is derived from ”panel data software” (or so the rumours go), and it allows you
to use a really nifty object called the Dataframe, which acts like a large table of data. Further still, it
gives you the functionality to import tabular data from software like excel.

The dataset we’re going to use consists of height and weight data for both men and women, called
gender-height-weight.csv. I’ll try and make this data available on the course pages as well.

If you place the gender-height-weight.csv file into the same directory as where you have your
Jupyter notebook, then we can access it in the code without having to write out the entire directory
of th file. We can then import the data using pandas’ read_csv function.

You can see here that the pandas read_csv function is quite straightforward to call. It will take the
data that is contained in bmi.csv and save it to a pandasDataFrame object, which is a wonderful data
structure which represents a python-native version of the DataFrame structure in the R programming
language. Notice that our data is actually in inches and pounds (as it is an American dataset), so we
shall have to convert this back to SI units before we can make a reasonable comparison.

When you import a .csv file or other kind of tabular data, pandas will, by default, assume that the
first line contains the column titles. If these are not supplied, you can work around this by providing

28

the column names when calling read_csv. It will also create a sort of zeroth column, the index,
which is sometimes useful in keeping the data structured.

4.2.1 Subsetting the data

We can select particular columns of the data with data['Height'], or we can select multiple
columns by using a double index: data[['Height', 'Weight']] When using pandas, the data
in these columns is stored as another datatype called a pandas series. For example, you’ll see that
if we select the Height column data with data['Height'], the type of what is returned is a pandas
series.

If we want to get a subset of the data in a pandas DataFrame, we can also put a pandas series
consisting of booleans inside of the square brackets, allowing us to filter the data appropriately. To
construct such a boolean series, we can apply a logical test to each of the rows in the DataFrame.
For example, to get a series which tests whether or not each observation corresponds to a male, we
can do the following:

We can then get a new DataFrame of only the men’s data using:

Select the men's heights and weights.
mens_height_weight = data[filt]

This will give us a filtered DataFrame mens_height_weight, which gives the men’s heights and
weights in inches and pounds, respectively. Since we want to be able to eventually compare this
distribution with our modelled distribution, we’re going to need to convert this data to metres and
kilograms. To do this, we can simply select the column, apply some operations to convert the data,
and save it again to a new DataFrame. It’s good practice to create a new DataFrame to save the data
to; otherwise you’ll get several warnings from pandas that you might cause an error.

Now that we’ve managed to convert the data, we can try and plot it.

4.2.2 Plotting the data

There are two straightforward ways to plot data using pandas. Firstly, it plays well with Matplotlib,
so we can plot it using pyplot. Secondly, pandas also has its own built-in plotting methods. For now,
we’ll keep using pyplot to keep it simple, but you can read more about the pandas-native plotting

29

here: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html, at the documenta-
tion page for the plot method.

Since we’ve converted the data to the same units, we can now compare the weights that our
model predicted according to height with the actual weights that we see in the data. By default,
using plt.hist twice will plot two different histograms on the same axes, allowing us to compare
the distributions. Let’s see what we get.

As you can see, our model was definitely not a good model whatsoever! Our model essentially
assumed that everybody has a BMI of exactly 20, which is definitely not the case. We’ll have a
look next time at how we can use python to perform statistical tests, to show conclusively (and
scientifically) that our model is wrong!

30

5 Hypothesis Testing

We mentioned last time that we’d like to have a more scientifically rigorous way of justifying that
our model is wrong. When scientists make hypotheses, they have to be careful to make sure that
they don’t fit their data to match a pattern, or search for spurious patterns in data. To do this, the
best way to work is to construct a hypothesis and then apply a statistical test on some data to see if
it matches with your hypothesis. This way we avoid the difficult and murky waters of searching for
patterns to report, which can often lead you to imaginary results.

5.1 Null Hypotheses and Alternative Hypotheses

When we formulate a hypothesis, we set up two competing hypotheses and see which one the data
prefers. These two hypotheses are called the null hypothesis (often denoted H0) and the alternative
hypothesis (often denotedH1). They are mutually exclusive, so whenever the null hypothesis is true,
the alternative hypothesis must be false and vice versa.

The null hypothesis is a statement which reflects the status quo or a baseline assumption. For
example, if you want to test that a new medication for Alzheimer’s has an effect on cognitive scores,
your null hypothesis would be that it has no effect. The alternative hypothesis is the negation of the
null hypothesis and states what must be true if the null hypothesis is false.

31

H0 The mean cognitive score of Alzheimer’s patients subjected to the treatment
is the same as the mean cognitive score of Alzheimer’s patients who were
not subjected to the treatment.

H1 There is a difference in the mean cognitive score of Alzheimer’s patients
subjected to the treatment and the mean cognitive score of Alzheimer’s
patients not subjected to the treatment.

When we perform a hypothesis test, we’re using the data we have to see if there is enough
evidence to accept H1 over H0 (that is, to reasonably believe that H1 is true and H0 is false), within
a certain margin of error. This is the basis for almost all hypothesis testing - there is usually a default,
status-quo assumption H0, and a mutually exclusive alternative H1, which is often more interesting.

5.2 p-values

We mentioned in the previous subsection that you might incorrectly conclude that H1 is true and
H0 is false because of a margin of error. For example, if we’re quite unlucky, it could be possible
that the data we collected was simply noisy, and by chance we saw evidence in favour of H1 (the
break from the status quo) when in fact this deviation might have just been due to noise, randomness
or chance. We represent this margin of error, the chance that we wrongly accept H1 over H0, with
something called a p-value - which is a probability.

To correctly perform a hypothesis test, we have to specify a certain p-value before the test. We set
up the test so that there is a certain probability p that we incorrectly accept H1 over H0. If we have
a very small value of p and the test turns out to rule in favour of H1, this means that the likelihood
that the hypothesis H1 is false is very small. However, extraordinary claims require extraordinary
evidence, and it’s much more likely that with a small p-value, your test will not conclusively find the
significant difference you’re hoping to see.

For this reason, the selected p-value for the test is usually relatively standardised within a field of
knowledge. In most scientific disciplines, a p-value of 0.05 is usually taken as the standard value.
That is, hypotheses are normally tested so that there is only a 5% chance of incorrectly rejecting
H0 in favour of H1. When there’s a lot on the line, however, for example a need to restructure
the fundamental language of physics (we’re looking at you, Higgs Boson), then a much smaller
p-value might be required. In validating the existence of the Higgs Boson, researchers used a 5σ
(p = 0.0000003!) significance test. Even then, it’s still theoretically possible that the observed data is
due to chance [5].

5.3 Smaller values of p

It’s been discussed in the scientific literature whether or not the industry standard of 5% should be
swapped for a smaller number like 1% [14]. Many academic papers will publish results containing
multiple tests, and it won’t surprise you that if you do 20 tests at the 5% significance level, you can
expect at least one of them to be significant (even if there is no relationship to be found at all). Going
even further, the main result of maybe 1 in every 20 papers might be just due to noise. For this
reason, it’s important to be careful when doing statistical tests, and be sure to set the significance
value ahead of time. We’ll discuss more about how we can manage statistical irregularities shortly.
For now, we’re going to see how we might do a significance test in python.

5.4 Performing a t-test

We’re going to stick with normal distributions for now and look at the most standard hypothesis test
you might want to perform, called a t-test. In fact, many statistical tests often act as if the underlying
distribution is normal, even when it isn’t, and you might find yourself using these kinds of tests an
enormous amount.

The t-test uses a test statistic T , which we can then look up in a table or online to see the cor-
responding significance level. The statistic measures the distance between a model, or status-quo

32

mean (e.g. we think the mean weight of cheeses in a factory is 1kg), and the mean of the actual
distribution (e.g. the cheeses actually average a weight of 1.1kg).

To do this, we take the reference mean µ, which reflects our status-quo assumption, and compute
the mean x̄ of a sample. We’ll then compare them using the T -statistic:

T =
µ ´ x̄

s/
?
n

where s is the sample standard deviation, and n is the total number of observations in the sample.

5.4.1 A cheesy example

Let’s go with the cheese example. Suppose that Carmine’s manufactures large wheels of cheese
which, on the label, are supposed to be 1kg. The CEO, Avril, wants to see whether or not the cheese
that they’re manufacturing is actually this size. To do this, Avril takes a sample of 10 wheels of cheese
and records their weights in a spreadsheet, cheese_10.csv. For each sample, they record the weight
in kilograms, the calcium content in grams, and the vitamin D content in micrograms (mcg).

To see if the cheese, does, in fact, have a mean weight of 1kg, they perform a t-test to see if the
mean value 1 fits with the data. While it’s reasonable to compute the test statistic T by hand with 10
samples, it might not scale up well with more samples, so we can use python to do this for us.

The function we’re going to use is part of the scipy package, so you might want to install this first
before proceeding if you want to follow along. Scipy is useful for lots of scientific work in python,
especially for statistical analysis.

Import numpy and pandas.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Import a special function for a 1-sample t-test in scipy.
from scipy.stats import ttest_1samp

Import the data.
cheese_data = pd.read_csv('cheese_10.csv')

Plot the data
plt.scatter(cheese_data['Weight_kg'], cheese_data['Calcium_g'])
plt.xlabel('Weight (kg)')
plt.ylabel('Calcium Content (g)')
plt.title('Plot to show cheese weight against calcium content')

Show the data.
plt.show()

As you can see, this plot isn’t particularly informative, but it might give us some indication that cal-
cium content improves with the weight of the cheese slightly. We’ll now try and use the ttest_1samp
function to see if, at the 5% significance level (p = 0.05) we can declare that the weight is, in fact,
not equal to 1kg in general. The hypotheses are set as follows:

H0 The mean weight of a manufactured wheel of cheese is 1 kg.

H1 The mean weight of a manufactured wheel of cheese is not 1 kg.

The function takes a sample as the first argument, and then the status-quo population mean as
the second argument. It can return both the T -statistic and the p-value at the same time. To assign
these both simultaneously we can write a comma on the left-hand side of the assignment operator
(=):

33

Get the t_statistic and the p_value.
t_statistic, p_value = ttest_1samp(cheese_data['Weight_kg'], 1.0)

Round the t-statistic and p-value.
t_statistic = np.round(t_statistic, 4)
p_value = np.round(p_value, 4)

Print these out.
print("The t-statistic is " + str(t_statistic) + ".")
print("The p-value is " + str(p_value) + ".")

>> The t-statistic is 3.2301.
>> The p-value is 0.0103.

Since the corresponding p-value we calculated is less than 0.05, we reject the null hypothesis,
and we accept the fact that the mean weight of the cheese is not actually equal to 1 kg. But what
should that weight be? To get this information, Avril takes a new sample of 1000 wheels of Carmine’s
cheese. They store the results in cheese_1000.csv.

We’ll load the data again, and use the pd.DataFrame.describe() method to get information
about the distributions of the sample.

Reading off the sample mean from the .describe() method, we can see that the mean weight

34

of a wheel of cheese is, in fact, 1.1kg. Better update the labels! But in addition to the mean and
standard deviation (std), we’re given the minimum and maximum values, and three quartiles. I.e.
25% of the cheese blocks have a weight less than 1.03kg. The lowest one is ridiculously small -
0.73kg. Avril needs to make their cheese production more standardised!

5.5 Other statistical tests

Depending on what you want to test, there are lots of different kinds of statistical tests. We’re going
to give a brief outline of various different statistical tests here, but we won’t go much into detail.

5.5.1 Variations on the t-test

There are various different scenarios where we might want to compare means between normal dis-
tributions, or distributions that we expect are normally distributed. The example we gave above was
just one version; in particular, we checked the test statistic (the mean) of a sample against a reference
value. This is called a one-sample t-test.

What if we want to compare the means of two independent samples (i.e. they’re from different
populations, e.g. Alzheimer’s patients versus healthy controls), and see if they are the same? In such
a case we use a two sample t-test. The corresponding function in scipy is scipy.stats.ttest_ind.
The two-sample t test assumes that both variables are distributed normally and with equal variance,
so the standard deviation σ is the same.

If we want to look at statistical differences at the individual level (e.g. we perform a study where
we observe the same person twice, before and after an intervention, say), then we use a paired t-
test. In this scenario we expect that the differences between individuals before and after are normally
distributed. We do not strictly require that the two distributions have the same variances.

5.5.2 Tests with more than two samples

One of the most standard tests for checking to see if one of several sample means is different to
the others is an ANOVA (short for Analysis of Variance). In this scenario, we have three or more
independent groups, and our null hypothesis is that all of their population means are the same.

There are a few variations. A one-way ANOVA measures one kind of dependent variable (e.g.
cognitive scores) across groups in a categorical variable (e.g. Alzheimer’s vs Mild Cognitive Impair-
ment vs Control). You can do this in python with scipy.stats.f_oneway.

A two-way ANOVA uses two different kinds of categories. For example, maybe we take age
bracket and income bracket against a test score. In this scenario we actually have three null hy-
potheses. Firstly, that the group means across age brackets are equal; secondly, that the group means
across income brackets are equal, and thirdly that the group means across income and age brackets
are equal. The first two are main effect tests and the last is the interaction effect test.

For completeness we’ll also mention the MANOVA, the multivariate analysis of variance. In
this scenario there are possibly multiple dependent and independent variables, and we look to see
if either of the independent variables changes across main and interaction groups.

5.5.3 Conclusion

There are many different kinds of statistical tests that you can employ in many different scenarios. The
bread-and-butter of statistical tests are the t-test and the ANOVA. Shortly we’re going to learn about
hypothesis testing when we work with data out in the wild - in particular, how we can employ some
very powerful modern methods to simulate distributions and use the result to test various hypotheses.
Next time, we’re going to look at exploratory data analyses - how we can start exploring with data
and answering interesting questions.

See you then!

35

6 Exploratory Data Analysis

We’re going to talk a bit now about the exploratory data analysis. When you obtain a new dataset,
or want to get to grips with understanding some data from your business or project, then the first
thing you’ll want to do is get a good feel for the data and start to understand the natural patterns
which emerge in your data. This starting process if often referred to as an exploratory data analysis,
or EDA.

There are lots of good reasons to do an EDA. First and foremost, it allows you to spot patterns in
your data that you might not have otherwise been aware of. For example, you might see a surprising
link between the number of people who bought today’s hotdogs in your theme park and customers
who went to see the nurse in the afternoon, or a curious correlation between the kinds of medicines
your study subjects are taking and how commonly they are affected by various diseases. EDA is
a great starting point for making discoveries. Secondly, EDA will let you know pretty quickly if
something is amiss in your data. You might notice that the important calculation that was supposed
to be done with SI units was done with imperial measurements, and that’s why your climate orbiter
might have crashed into Mars [3].

For that reason, we’re going to have a look at the whole process of performing a relatively basic
exploratory data analysis, so that you can take what you learn and apply it to your own datasets.

6.1 Locating Data

When you want to work on your own projects, or start putting together a portfolio of small data-
science projects to convince a potential employer that you have these kinds of skills, you’ll often
have to start by sourcing your own data.

If you’re working at a company or other institution, a lot of their data might be stored in a SQL
(also sometimes pronounced as ”sequel”) database. This is a bit beyond the scope of this course,
but if you want to find out how to search through SQL databases, you can learn about the query
language SQL online. You can even use SQL queries to search through pandas DataFrames with
pd.DataFrame.query.

We’re going to work with some public datasets. There’s lots of really interesting data out there,
and putting it together gives us a chance to see lots of interesting relationships. Some great places to
find data are Our World in Data, the Office for National Statistics or Kaggle.

We’re going to look specifically at two datasets from Our World in Data looking at the CO2

production and the global temperature anomaly. We have these two datasets saved as .csv files
under annual-co2-emissions-per-country.csv and climate-change.csv respectively.

6.2 Importing Data

We’re going to start a new Jupyter Notebook for our exploratory data analysis. We’re going to get
straight in and use pandas to import the .csv data.

36

This is a good time to mention that pandas can also handle some other kinds of imports. For
example, it also has the read_excel method for reading .xls or .xlsx files.

After you import the data, it’s a good idea to get a little bit of awareness of what is contained in
the data. Have a look at the column titles and the number of entries. You’ll see from the figures that
the co2_data DataFrame has considerably fewer columns, whereas the temperature_data has 25
columns! To get a full list we can use temperature_data.columns to get a complete list.

37

It’s often helpful when you’re looking at the data to use Jupyter’s ability to render Markdown.
A great way to do this is to break your work up into sections and write labels for what your code
is broadly doing or trying to achieve. You might even find it helpful to label your sections with
questions, to help guide your exploration.

Looking at what we find in temperature_data.columns, we realise we have a column called
Entity, just like in the co2_data DataFrame. A useful command for understanding what different
kinds of entries appear in a column is value_counts(). Here’s what we get:

With this in hand, we can now see that there are entries for different parts of the planet, with dif-
ferent records for different regions. We’re going to be focusing on global emissions and temperature
data. Indeed, checkingwhich values of Entity are available in the co2_datawith co2_data['Entity'].unique()
shows us that there are also CO2 measures for the entire world. Let’s move on to getting the data
into a format that we can work better with.

6.3 Cleaning and formatting the data

Since we’re only going to worry about collecting the global data for now, we’re going to subset the
data which is explicitly referring to ”World” as the entity in both datasets. We’ll save the resulting
data to global_co2_data and global_temperature_data respectively.

38

In this part of the data, all of the times are recorded in years. We’d like to see what the relationship
is between yearly CO2 production and the movement of temperature anomaly, so we need to make
sure that the times match up correctly. We can see that for the temperature data the date is recorded
with a month and a day. To get around this, we’re going to average across the year to get an average
value for the temperature anomaly. To do that we’re going to use a pivot table.

A pivot table is a representation of data which allows you to compare groups based on different
characteristics. You specify certain values - numerical data that you want to understand between
groups, and the groups into which you want to break the data. By default, pd.pivot_table will
average the numerical values across the group, which is what we want to do here.

To start, we’re going to filter out all of the columns we don’t need from the global temperature
data DataFrame down to another DataFrame called temp_anomaly.

Next, we will add a new column onto the DataFrame called Year. To achieve this, we’re going
to change the datatype of theDate column to a datetime, extract the year using .dt.year and saving
this to the new column. Don’t worry too much about the specifics of this for now. If you want to
learn more about time series data (that is, data with a time-point attached), you can find a lot of
resources online.

39

Note that pandas is throwing a warning because it’s concerned that we’re editing something
in place. In this particular case it’s being a bit overcautious, as we’re actually constructing a new
column for the year data. Now we have about 12 entries for each year, and you’ll notice that under
Temperature anomaly we have a number of entries that say NaN. This stands for not a number, and
reflects where data is missing or absent. This is the default way of representing missing data in pandas
and numpy, and it makes it easier for different functions to work out what it should be doing with
the data.

As we create the pivot table, we’re going to see that pandas will automatically discard these
entries. Let’s go ahead and create the pivot table - the function will return a DataFrame.

40

The first argument to pivot_table is the DataFrame, and we specify the values and groups with
values and columns respectively. Lastly, as the pivot table returns a long horizontal table, we’ve
used transpose() to flip the axes, getting it back into a format we were expecting. The only differ-
ence is that it is now using the Year column as an index. We can reset this using reset_index(inplace = True).
The inplace = True part simply changes the underlying DataFrame without us having to re-assign
it to save the changes.

We’re going to make one last addition to the data. Since global_co2_data shows the amount
of CO2 produced by different entities in each year, and it’s more likely that the total amount of CO2

in the atmosphere is affecting the temperature anomaly, we’re going to add a cumulative column
which represents the total amount of carbon dioxide added to the atmosphere since the start of the
record. For this we can use cumsum() to get a cumulative column.

This adds a new column called Cumulative_CO2 which contains the total amount of equivalent
CO2 that’s been added to the atmosphere since the beginning of the record. With this in hand, we’re
in a great position to actually start exploring the relationship between these two datasets.

6.4 Joining data

We now have two DataFrames containing different data, and to put them back together we’re going
to learn the data science power move - the join.

In many scenarios, you might find that you have data you’d like to attach to each other from
different tables or datasets. In this case, we want to attach data about the global temperature anomaly
to data about CO2 production. These bits of data are sitting in different tables, so we’re going to need
to take data from one and connect it to the other.

To do this, we need to find a way of matching records from one table with records in the other. In
this case we need a column which tells us how to match the entries together. This column is called
the key, and tells us the relationship between the two tables. In our case, the key is the year, as this
reflects the relationship between the entries in year_anomaly and global_co2_data.

There are some different kinds of joins. There are inner, outer, left and right joins, but they all
achieve the same goal - combining data from different tables.

41

The join we’re going to perform is the inner join. In an inner join, the result of joining two tables
on a given key is a new table which contains only data which corresponds to a given key in both
tables (e.g. both the CO2 data and the temperature data must both have an entry for 1980 for the
1980 entry to appear in the resulting table. Only those key values which appear in both tables will
appear in the output.

To do an inner join with pandas, we use the merge method of a DataFrame.

The first argument is the DataFrame we wish to connect, how is the kind of join, and on gives
the key. In this case, we’re joining the global_co2_data to the year_anomaly data on the Year
column.

As you can see, what we get is a new table which contains all of the data from both tables where
they are both specified for a given year. In practice, this is every year between 1880 and the year
2022. This is great! We now have a table of all global data containing both CO2 accumulation and
the temperature anomaly. Let’s see what it looks like!

6.5 Plotting the Data

We’re going to use the native pandas plotting method to start with, though we could just as easily
use matplotlib. To do this, we take the DataFrame with the data and use the .plot method. What
we get is this unsettling graph, clearly showing the relationship between CO2 accumulated in the
atmosphere and the global temperature anomaly.

42

You can see that there are a larger number of points down in the bottom left corner. This tells
us that there were lots of years in the record where the global cumulative CO2 production was still
incredibly low, before the modern world got underway.

6.6 Fitting a line of best fit

Let’s finish by trying to calculate a line of best fit for this graph. To do this we’re again going to use
the scipy.stats module to compute the slope and intercept of a line of best fit, which is computed
using linear regression.

When we run the regression with scipy.stats.linregress, the result is an instance of the
LinregressResult object, which contains the slope and intercept data as attributes. We’ve used
attributes implicitly in this course before - they’re simply variables stored in an object, and you can
access them with object.attribute. We then round these, and see what the result is.

Another attribute saved in the LinregressResult object is the p-value associated with the fol-
lowing two hypotheses:

H0 The slope of the regression is zero.

H1 The slope of the regression is not zero.

In particular, the chances of observing this data if the line of best fit should actually be flat is given
by the p-value. In this case:

43

That’s 72 zeros after the decimal point, so we can be pretty sure that the relationship exists. But
how was this calculated? We’ll come to that in the next lecture, where we’ll take your statistical
modelling skills to the next level!

44

7 Simulation and Hacker Statistics

It’s an unfortunate truth about the world that reality is complicated. It routinely refuses to match ana-
lytical5 models exactly, and this can make reasoning about data and relationships quite complicated.
In practice, this is often due to the fact that it can be challenging to isolate the underlying distribution
in the data with a formula - many empirical distributions get quite messy quite quickly.

Consider, for example, how earlier in the course we considered the distribution of BMI. Since
this is computed with

BMI =
Weight (kg)

(Height (m))2
,

we have no reason to believe that the BMI might have a normal distribution. In fact, it has a tendency
to skew upwards, with a slightly longer tail on higher BMIs than lower BMIs. The expected analytical
form of the distribution of BMI is not incredibly straightforward to discern.

Thus far, we have only seen the standard Gaussian distribution. We aren’t going to go into depth
into any other kinds of distributions for lack of space (although there are a good number and they’re
very interesting), but instead we’re going to try and give you the skills you need to be able to work
in situations where the distribution is not obvious or analytical.

7.1 Length of movies on Netflix

To get a feel for an unusual distribution, we’re going to take some real data from Netflix and look at
the lengths of the movies which are provided on the platform. It’s going to take a few steps, and this
time we’re importing from an excel file (.xlsx). We start by importing pandas and scipy, as we’re
going to need scipy to look at the distribution.

Import some packages.
import scipy
import pandas as pd

Load the netflix dataset.
netflix = pd.read_excel('netflix_titles.xlsx')

Here we used the pandas function read_excel which can import data from excel spreadsheets.
In order to get this function to work, you might also have to install a package (with pip as before)
called openpyxl. This is an optional dependency for pandas, meaning that while some parts of the
library use this package, it won’t install it for you.

Looking at the netflix DataFrame, we see that it has a column called type and a column called
duration. We’ll select the movies which are on Netflix by filtering on the type column.

Select the movies from the data using .loc for safe indexing.
movies = netflix.loc[netflix['type'] == 'Movie'].copy()

While it’s quite possible to use netflix[netflix['type'] == 'Movie'], we saw previously
that this will sometimes raise a warning, because Pandas is scared you might confuse a view for
a copy. Roughly speaking, a view is a representation of the data in the DataFrame, accessing the
same locations in computer memory. A copy creates a new version of the data, stored at a different
location in the computer memory. To make it very explicit to Pandas that we want to look at data
in the original table, we use .loc (which takes either Boolean series as here, or it can take a slice of
rows and then a slice of columns). See the documentation at https://pandas.pydata.org/docs/
reference/api/pandas.DataFrame.loc.html for more information on .loc.

To be explicit that we then want to take this data and make a copy, we use .copy(), which will
save this data to a new location in memory. Taking the time to do this extra step makes sure that we
don’t accidentally change something we don’t intend to (although often this problem doesn’t arise).

5Analytical in this context means that there’s a mathematical formalism which describes the situation and allows us to
compute the exact form of the solution.

45

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.loc.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.loc.html

Another thing you might notice if you look at the data is that all of the durations are stored in
the form of a string like ”90 min” or ”101 min”. We’ll need to format this so that this data is instead
stored as an integer.

Create a new column dur_min.
movies['dur_min'] = movies['duration'].apply(lambda dur_text: str(dur_text).split()[0])

There are a few more things to explain here. Firstly we select the duration column in the movies
DataFrame. We’re using the method .apply which takes, as an argument, a function, which it will
then apply to every entry in the series. The function we’ve given doesn’t look like anything we’ve
seen, but it’s relatively straightforward notation. It’s interesting though, so worth a brief interlude.

7.1.1 Lambda functions

A lambda function is a function which is short enough that it doesn’t need a name. In many scenarios
you might have a short function that you want to apply but you don’t want to spend additional time
defining the function, and this is when lambda functions are most useful. The syntax is like this:

lambda (arguments): (output in terms of arguments)

A function which squares all inputs.
lambda x: x**2

A function which adds together its two arguments.
lambda x, y: x + y

A function which just returns an uppercase version of a string.
lambda word: word.upper()

What our lambda function does is take the entries like ”100 min” (here designated as dur_text),
and makes sure they’re actually a string with str. All strings have a useful method called split,
which turns a string into a list of words. We then index that list to get the first word, so we get a string
corresponding to ”100”.

We could try to immediately convert it to an integer too, but this will actually give an error.
Looking at the data, we see that some of the durations are given as ’nan’. This is because some of
the movies are included without reference to a length - possibly because they made use of Netflix’s
”interactive storytelling” feature. You might have seen this if you’ve seen Black Mirror’s Bander-
snatch, or the life-changing phenomenon of Spirit Riding Free: Ride Along Adventure. For the sake
of simplicity, we’ll remove these movies and then convert the durations on the remaining movies to
an integer.

Remove the nan entries using .loc
movies = movies.loc[movies['dur_min'] != 'nan']

Change the data type to integers using .loc
movies['dur_min'] = movies['dur_min'].apply(lambda x: int(x))

With that in hand, we can finally plot a histogram of the data, to get a rough idea of the distribution
of the movie lengths.

46

What we see is a broad spread, with a small peak around the 20-25 minute range for some short
films and a larger peak around 90-100 minutes. This distribution is definitely not one we could
analytically derive. Using the .describe method on the series gives us some summary statistics for
the dataset.

We see that there are 6,129 entries remaining in the data, after we removed TV Series and those
movies with ’nan’ lengths. The average movie, including short films, is about 99 and a half minutes
long. The longest movie is a whopping 312 minutes! That’s more than 5 hours!

To get a better idea of the distribution of these film lengths, we can also plot an empirical cu-
mulative distribution function. This is a function which shows, given a value x for the length of a
film, the probability that a randomly selected film would have a length less than x. To do this, we’re
going to use scipy.stats.ecdf.

Don’t worry too much about the the plotting code. Feel free to use this snippet of code directly
to produce the empirical cumulative distribution function of the movie duration data.

47

Normally in statistics we work with probability density functions, pdfs, rather than cumulative
distribution functions. There’s a way to estimate this in python, but it’s not quite as reliable as
the empirical cdf. You have to make some assumptions about the smoothness of the distribution.
Regardless, if you want to do it, you can use the kdeplot from the seaborn package to do so.

48

7.2 Monte Carlo Methods

Loosely speaking, Monte Carlo methods are a class of techniques which depend upon repeated
computational sampling and simulation to gain insight about a system. Many systems are much too
complex or random to reasonably make good deductions about. However, running a simulation over
and over again, you might get a good idea about what, on average, you might expect to happen.
These methods are named after the Casino Monte Carlo.

Performing simulations with python can make some very complex scenarios relatively straight-
forward to simulate. To demonstrate this, we’re going run a stock market simulation on a single stock
- that of Downing Coffee Limited. We’re trying to decide whether or not we should invest our well
earned 100 pounds into this high-volatility coffee stock. To help us make our decision, we create
a model which simulates the stock price of Downing Coffee Limited. Suppose that our model is
absolutely fantastic - its simulations are incredibly realistic, but we can never truly predict the future,
so we always have to account for random noise. Here’s the code that runs our model.

def simulate_gbm(S0, mu, sigma, T, dt):
"""
Simulates a Geometric Brownian Motion path.

Parameters:
S0 (float): Initial stock price
mu (float): Expected return
sigma (float): Volatility of the stock
T (int): Time horizon
dt (float): Time step size

Returns:
numpy.ndarray: Simulated GBM path
"""
n_steps = int(T / dt)
times = np.linspace(0, T, n_steps)
S = np.zeros(n_steps)
S[0] = S0
for t in range(1, n_steps):

Z = np.random.normal(0, 1)
S[t] = S[t-1] * np.exp((mu - 0.5 * sigma**2) * dt + sigma * np.sqrt(dt) * Z)

return times, S

Parameters
S0 = 100 # Initial stock price
mu = 0.03 # Drift coefficient
sigma = 0.05 # Volatility
T = 5 # Time horizon (5 years)
dt = 0.01 # Time step size

Simulate GBM
times, S = simulate_gbm(S0, mu, sigma, T, dt)

49

Running the function simulate_gbm will give us back two numpy arrays. The times array con-
tains time points across 5 years. The S numpy array consists of the stock price at each time point.
Plotting these against each other shows the behaviour of the value of the stock over 5 years.

The model we’re using is based on geometric brownian motion, which actually captures the
characteristic flickering movements of many investments. That isn’t to say that it will predict the
movement of the market perfectly - far from it, but it does look pretty good.

Let’s run our simulation once to see one possible outcome for investing our 100 pounds into
Downing Coffee Limited.

Well that doesn’t look very good. In fact, the final value of our investment in this case was 85
pounds and 15 pence. Not a stellar performance on this high-volatility stock. Does this mean that
we shouldn’t invest in Downing Coffee Limited? Not necessarily - what if we simply had some bad
luck and didn’t see what could have been?

Let’s try re-running the simulation 10 times, and see what happens each time.

50

Looks like we might have just had a bad run. In this case, eight out of ten of the simulations
increased the value of our investment. But ideally we’d like to be even more precise than this.
What’s the probability that our investment is going to appreciate in value? What is the expected
(average) return on our investment? To do this we’re going to run the simulation 10,000 times, and
see what we get out the other side.

51

Now we’ve run this simulation 10,000 times, we can see that in the vast majority of simulations
the value of the investment actually increased. To quickly see some summary statistics on the data,
we can put it into a pandas DataFrame and then use the describe method to get the following:

52

From this we see that the average return on investment was 16 pounds and 3 pence. The standard
deviation was about 13 pounds, and the median return was 15 pounds 30 pence. What percentage
of the runs resulted in a loss? To see this we can look up the percentile corresponding to the final
value 100 using scipy.

Get the percentile corresponding to £100
scipy.stats.percentileofscore(final_values, 100)

>>> 10.43

This value varies a small amount, so we’ll say that roughly 10% of the simulated investments
actually made a loss over the 5 year period. Interesting stuff! Would you consider investing in
Downing Coffee Limited, given this new information?

7.3 Hacker statistics

When we apply Monte Carlo methods to statistics, we’re doing what a lot of data scientists might
refer to as hacker statistics. For example, we made an estimation of the probability that we would
have a positive return on our investment, rather than making a loss.

We saw that, on average, if the model is simulating the stochastic behaviour of the market per-
fectly, that we would always expect to see an average return on investment of 16 pounds over 5
years. But how confident can we be in that number?

7.3.1 Confidence intervals

Earlier when we were looking at hypothesis testing, we used p-values to check whether or not our
hypothesis is correct. In that scenario we had two hypotheses, the null hypothesis and the alternative
hypothesis, and the p-value was the probability that we incorrectly dismissed the null hypothesis and
accepted the alternative hypothesis.

In the same vein, we can ask ourselves what the probability is that a certain measurement we
have taken of a population is correct within a reasonable margin of error. When we do this we
extract two numbers - an upper and a lower bound, and the probability that the population statistic
lies in between these bounds will then be equal to a pre-specified probability (the confidence level).

To one way to compute confidence intervals on sample statistics, we’re going to use a powerful
method called bootstrapping to look at the distribution of salaries of data scientists.

53

7.3.2 Bootstrapping

The dataset we’re going to use consists of a random sample of 608 different salaries of individuals
working in data science across different countries, along with other bits of information about the size
of their company and official title. This dataset, like some of the others in this course, is taken from
Kaggle (https://www.kaggle.com/datasets/sanyacodes/salaries-in-data-science).

Here we import the data and immediately use the describe method to get an idea of the dis-
tribution of the data. In particular, we see that the mean salary observed in our sample in USD is
$112,298. But how much can we rely on this number? It might be that, again, due to chance, our
observed mean might be slightly off of the actual value for the entire world’s population of data
scientists. We’re going to compute a confidence

There are broadly two approaches to making up for the difference between a sample and a pop-
ulation. The first is to make a model of the population with some assumptions you might reasonably
believe to be true; for example, that it has a normal or Gaussian distribution. Alternatively you
can capitalise on the information you already have from the sample. Bootstrapping is a method of
achieving the second.

When we bootstrap, we are taking a new sample from the one we already have, except we sample
with replacement. For example, given an original sample:

1, 1, 2, 3, 6, 7, 8, 10, 10, 11

we could extract the following resample:

1, 2, 3, 6, 6, 7, 10, 10, 10, 11

Note that in our resample we might have several copies of original data. The result is that every ob-
servation in the resampling is drawn from the distribution of the sample (which is the only distribution
we reasonably are able to assume looks like the population distribution).

If we then compute statistics on this new group, e.g. we compute a mean or standard deviation
or some other thing we’re trying to compute, then with maximum likelihood it will look as if we
had simply taken a sample from the whole population. Repeating this resampling process over and
over again will give us effectively a family of different possible samples, and for each one we will
compute the test statistic, giving us a distribution of that statistic.

In essence, sample distributions are a good estimate for a population distribution, so we can use
it to deduce things about the population distribution.

To do this in python, we can again use scipy.stats to take the salary data and compute the
mean on 100,000 resamples. We’re going to do this at the 95% confidence level, meaning that
there’s a 95% chance that the population mean lies within the range we find.

54

https://www.kaggle.com/datasets/sanyacodes/salaries-in-data-science

To sum up our findings, there is a 95% chance that the mean salary (in USD) of data scientists
worldwide lies in the range of $106,938 to $118,222. If we had more data, we could narrow this
range even further.

Bootstrapping is a powerful technique for making deductions about population statistic distribu-
tions based off of samples of a population. They’re very common in science for finding confidence
intervals, where it’s not always immediately straightforward to model the population statistic. It’s a
useful tool to remember!

55

8 Machine Learning: A Brief Introduction

8.1 Introduction

In the modern world it’s very likely you’ve come across the phrase artificial intelligence. This no-
tion, whereby a machine acts with some degree of intelligence, is surprisingly outdated. Artificial
intelligence in the old school sense can include, for example, an agent which is given a series of if
x then y rules about how it should behave. With sufficiently many of these rules, a machine can
give a relatively thin impression of being intelligent, with the caveat that it can never respond to new
situations appropriately - it cannot take what knowledge it has and generalise with it, or use it to
perform more complex behaviour.

Because of this reason, modern research in AI is focused on the much more powerful realm
of Machine Learning or ML. Machines can have useful abilities with old-school AI, but machine
learning can give machines abilities that old-style AI never could have. The key difference is that in
machine learning, the machine learns patterns in the data itself. That way, rather than trying to list
every possible piece of information that might inform a decision, the machine can deal with this part
for you.

8.2 Agents and Models

In AI, there are broadly two classes of entities that we might come across. The first such entity, on
which we’re going to focus for the rest of this lecture, are models. A model is any kind of system
which is designed to make predictions. It fundamentally takes input from data which is known and
tries to predict something which we don’t already know. For example, if I had a good amount of
Google street view data, I could try and develop a model to predict the price of a house based on its
facade facing the street. The model doesn’t do anything else.

In contrast, an agent is an entity which takes inputs from some kind of an environment and
performs actions (often called policies in ML) based on its inputs. This idea is actually incredibly
general, and it appears all over science and economics. For example, countries act like agents, as
do the people that live there. They all experience some kind of an environment (be it the global
political and economic climate, or your living room) and take actions (like increasing interest rates,
or reading a book). Agents often incorporate models in order to help them take actions.

The holy grail of AI research is a kind of agent with enough intelligence that it can perform
most (if not all) human tasks as well as humans can. When this occurs, the agent is said to possess
artificial general intelligence, or AGI. Further down the line, if there exists an agent which is strictly
outperforming humans on most or all tasks, then this is called artificial super intelligence, or ASI.

Both AGI and ASI have the potential to make remarkable changes to the global landscape, and,
if AI scientists are to be believed, seem to be getting closer and closer. About 5 years ago, only 45%
of scientists expected AGI to occur before 2060. Today, nearly half of scientists believe it’s going
to happen before 2048. Some people, such as Sam Altman, CEO of OpenAI, think it’ll be achieved
within 5 years. In any case, scientists are taking the possibility quite seriously, so don’t be surprised
if you find yourself interacting with agents with increasing frequency.

8.3 Types of machine learning

Broadly, machine learning scientists use three types of methods to help develop a model or an agent.
These are supervised learning, unsupervised learning and reinforcement learning.

8.3.1 Supervised learning

When you teach a human how to do something, especially if it’s completely new or unfamiliar, then
you’re usually inclined to give them lots of different examples. This method is also applied when
training machines. In essence, a supervised learning algorithm will provide the machine with lots of
different examples about what kind of answer it’s supposed to give. For the street-view house-price
prediction engine, for instance, we might give the machine lots of pictures of different houses and
tell it what the corresponding house price was. Usually in supervised learning, the model looks at

56

the input data and then makes a prediction (even if this is completely wrong). Then, when provided
with the actual answer, it will adjust itself so that in future cases it will be closer the correct answer.
The main problem with supervised learning is that it requires large, labelled datasets, which can
often be expensive or difficult to produce. We’ll look at two supervised learning techniques: linear
regression and logistic regression, although many more exist (e.g. artificial neural networks).

8.3.2 Unsupervised learning

Given the difficulty of producing large labelled datasets, you might wonder if machines can produce
interesting results without being providedwith labels. These kinds of approaches, where the output of
the machine is not explicitly corrected, are called unsupervised learningmethods. In these methods,
the machine might be breaking up the input data into different clusters, or breaking them down
into different components. We’re going to have a look at one clustering algorithm (called k-means
clustering) and one dimensionality reduction (principal component analysis).

8.3.3 Reinforcement learning

This one’s a little bit different from the other two. Reinforcement learning is when an agent takes
inputs from an environment and acts in that environment to maximise a certain score or goal. For
example, suppose you want to train an agent to play a video game, and to do this you give it the
goal of maximising it’s percentage progress through the game. In this case, the agent will act so as
to maximise its progress and change its behaviour when it starts over each time to try and make it
progress even further. We won’t look at these kinds of techniques any further, but they’re incredibly
interesting. If you’re interested, there’s lots of material on these kinds of models online6.

8.4 Scikit-Learn

One of the best tools for implementing basic machine learning in python is the package scikit-learn.
This package provides lots of relatively straightforward tools for easy access to machine learning
techniques. To install it, navigate to your command line and run pip scikit-learn. It works well
with data from NumPy and Pandas!

Let’s load some data using Pandas. This is a classic dataset called the iris dataset, and it contains
data about three different species of the genus iris.

6For example, see AlphaGo, AlphaZero, MuZero from Google.

57

We’re going to use this data to try and predict the species using all of the other available data
about the petals and sepals. For this reason, it’s worth a quick detour to talk about features and
targets.

8.4.1 Features and targets

When we’re building a model in ML, we want to make the separation between our input and output
data quite explicit. When the model is making its prediction, the only data it should see are pieces
of data called features. A feature roughly corresponds to a column in a table, or a certain type of
information about the input. In our house-price prediction model, this might be images we provide,
or an explicit calculation of the number of windows or number of garages, but not the price of the
house, as the model won’t see this when it makes its predictions.

The thing our model is trying to predict is called the target. The target can be any kind of data,
but broadly speaking, if the target is categorical, such as when we’re trying to predict the species
of the iris plant, then the model is called a classifier. If the target is continuous, e.g. the price of a
house, then the model is called a regressor. Both classifiers and regressors are known as estimators
in scikit-learn.

In scikit-learn, there are three useful methods for each instance of an estimator. First, there is the
fit method. This method will train the given model on its training data. Then the predict method
will take in unseen data and make predictions using the model. Lastly, you can score the model to
see how well the model performs. The exact metric used will depend on the estimator, or you can
specify your own scoring system.

8.4.2 Logistic regression

We’re going to proceed by using a method called logistic regression to predict the species of each
flower in the iris dataset. Despite its name, logistic regression is usually thought of as a classification
method. It works by fitting a logistic curve to the data.

58

The equation of the basic logistic curve is

σ(x) =
1

1 + e´x

and it varies between 0 and 1. Because of this property, sometimes the logistic function is viewed as
representing an output probability, even though this isn’t strictly a probability in the usual sense.

To each of the possible output classes, based on some numerical input data, the model will take a
weighted sum of the inputs and try to compute the probability of each class compared to each other.
Suppose, for example, that you had a series of features X1, . . . , X4 and a target T . Then logistic
regression will make an estimate of the probabilities that each observation belong to each class t in
the target variable by computing something like

σ(a1tX1 + a2tX2 + a3tX3 + a4tX4)

and then scaling it against the probabilities of the other classes. The class with the highest probability
is then selected as the output class from the model. If you want more details on the mathematics of
Logistic Regression, you can find it online or a brief introduction is also given on this page from scikit-
learn: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression.

To implement this in scikit-learn, we’re going to work through a few different steps. Firstly, we’re
going to import the code we’re going to need from scikit-learn, take the data we imported earlier and
split it into different parts.

In the first block we import the classifier object LogisticRegression and some other tools. By
default, Scikit-learn won’t import all of its code for you from its library, so if you want to use a
particular piece of the code, you usually have to import it first. In the second block we specify our
features and our target. When working with scikit-learn, it’s common to label your features asX and
your target as y.

When we work with machine learning models, it’s incredibly important to test the model on
different data to where it was trained. This is one of the most fundamental rules in ML - if you don’t
do this, then you’ll find that your model might not be able to generalise to the real world at all; it
could, for example, learn the solution to each of the training problems almost by rote and be unable
to generalise. This issue, called overfitting, can be easily spotted if you separate data to train from
data to test.

The useful function train_test_split will help us break our data into two parts. In this case,
test_size is set to 0.2, so we’ll keep 80% of our data for training purposes, and 20% for testing
purposes. You’ll also see stratify = y. This means that when it breaks the data into two groups
(which it does at random), it will make sure that the ratio of different targets is preserved in the
training and testing sets. If we didn’t do this, we might accidentally reduce the number of different
observations of a certain species in our test data, leading to somewhat more unreliable results. Lastly,
we see a random_state = 3 - this is a seed which enables you to replicate your data split, but doesn’t
always need to be specified.

Now for the fun stuff.

59

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

>>> The model accuracy was 0.9.

Firstly, we initialise an instance of our classifier. We’ll name our classifier iris_model to keep
it straightforward. When we call LogisticRegression(), we can also specify other parameters to
change how the classifier behaves. In this instance, we’ve gone with the default behaviour for our
classifier.

Now we can use the training data to fit our model. In scikit-learn, this is as simple as writing
.fit(X_train, y_train). This tells the model which features it should train on and which target
to predict. Once we’ve used the .fit() method, we can then use the .predict(X_test) method
to see what the model predicts should be the corresponding target values for the given test features.
We’ve saved this, as with standard scikit-learn nomenclature as y_pred.

Lastly, we’ve obtained an accuracy score from the test data. Note that the .scoremethod doesn’t
require that we use .predict first - we’ve just saved the predictions so we can see where our model
was performing best in a minute. Score will perform the prediction for you. In this case, this model
actually works well - 90% of its classifications were correct!

To see where the model might falter slightly, we’re going to use the confusion matrixwe imported
earlier. This will be a matrix showing, for each class, what the model predicted compared to what
the species actually was.

From this we can see that occasionally versicolor was predicted as being virginica - this happened
twice, and once a virginica plant was predicted as being versicolor. Visualisations like this can

60

really help make your models more transparent, making it easier to see where your models might be
performing their best and their worst.

8.5 Linear Regression

We’re now going to have a quick look at a regression problem using a linear regression model.
This is one of the most commonly used models in all of machine learning, and they appear all over
science in general, especially when we want to see if the effect we see in an experiment is due to
and intervention or some other factor.

8.5.1 The broad mathematical details

When we fit a linear model to data, we consider a series of feature variables X1, . . . , Xn and a given
target variable Y . We assume that there is some kind of linear relationship between the feature data
and the target data. That is, we assume that, roughly, there is a relationship

Y « a1X1 + a2X2 + ¨ ¨ ¨ + anXn + b

where a1, . . . , an are coefficients representing a contribution from each input variable, and b is the
Y -intercept, the expected value of the target Y if all input variables were zero. However, even if
we choose a1, . . . , an and b perfectly, since our data is noisy, we don’t expect that Y will be exactly
equal to what’s given on the right hand side. For that reason, we include a residual term, E, which
makes up the difference. The residual is the variation in Y which cannot be explained linearly by
X1, . . . , Xn. Hence we might write the model as

Y = a1X1 + a2X2 + ¨ ¨ ¨ + anXn + b+ E

where the equality is now exact.
This is exactly what linear regression is - it is any method which estimates the best values for

a1, . . . an and b so that the residuals E are as small as possible. The most commonly used method for
estimating the coefficients is called ordinary least squares (OLS)7, so much so that often people use
linear regression and ordinary least squares regression interchangeably. Other methods for linear
model regressions exist however, like ridge and lasso regressions, but we won’t cover these here.

Figure 5: The total area of the squares (whose side length is given by the residuals E) is minimised
so as to fit the line as closely as possible.

In OLS linear regression, the squared residuals are minimised through an optimisation algorithm,
leaving us with a nice linear model which we can use to make predictions. This time, rather than
making a classification, the model we’ve built takes numerical inputs and provides a numerical
output. Let’s see how this can be implemented in python.

7You might be wondering why we square the differences rather than just looking at the absolute value of the difference.
One reason is that the absolute value, | ¨ | is not nicely differentiable, making computations harder. The other reason is that
squared differences fit more neatly into the rest of statistical theory, where standard deviation (also a squared difference) is
nice and additive across independent variables - a property that

ř

| ¨ | would lack.

61

8.5.2 Linear regression in python

The data we’re going to use consists of information about different cars, their brands, models, engines
and fuel use, along with their CO2 emissions. We’re going to use the linear regression model to try
to predict their carbon emissions based on their fuel consumption and the size of the engine.

To start, we’ll import the data.

We can see that there are four numerical pieces of data in our DataFrame. Those are ENGINE SIZE,
the size of the engine in litres, CYLINDERS, the number of cylinders in that engine, FUEL CONSUMPTION,
the consumption of fuel in kilometres per litre (interestingly in europe this is normally given by litres
per kilometre), and COEMISSIONS, the CO2 equivalent emissions in grams per kilometre. Note that all
of these cars are from the year 2000, so their fuel economy is not fantastic and their CO2 emissions
are significantly higher than today’s cars.

Now we implement the linear regression model.

This time, rather than accuracy, the model score we receive is called the coefficient of determi-
nation, or R2. This number is given by

R2 = 1 ´
SSmodel
SSmean

,

where SSmodel is the sum of residual squares given by our model, and SSmean is the sum of squares
of residuals if we assumed (as per figure 5) that the best model would be to simply output the mean
target value. You can also think of R2 as the ratio of variance explained by the model to the total
variance in the target. In this case, 98.4% of the variance in carbon emissions is explained by the
engine size, the number of cylinders and the fuel consumption, which means our model performed
incredibly well!

If we want to make predictions using our model, we can use a format like this:

62

Make a prediction for a 4-cyclinder 1.6l engine with fuel consumption of 10.5
emission_model.predict(np.array([1.6, 4, 10.5]).reshape(1, -1))

>>> array([213.48269139])

The .reshape changes the array into a form that the model is expecting (normally there are
multiple inputs to predict, so it would be 2-dimensional - we only provided one input so we change
it to a 2-dimensional matrix). What we see is that given these inputs we expect to produce about
213 grams of CO2 per kilometre. This is incredibly close to the actual value for a 2000 ACURA 1.6
EL with A4 transmission!

8.6 Some unsupervised techniques

While we aren’t going to go too into depth into these two methods, it’s worth mentioning them in
case you want to use them in your own analyses.

8.6.1 Clustering

Suppose that you have a customer base for a company and want to find out if there are different
groups of customers. Perhaps some are mid-day elderly shoppers, and others are 3am teenagers.
Perhaps there’s another group of working parents who only shop on Saturdays. These three groups
are all likely to have different purchasing habits, and it might be useful to a company to be able to
distinguish between people in these different groups. But without any prior knowledge, how could
we detect where these groups are?

Methods which achieve this are called clustering methods, and scikit-learn also has several dif-
ferent implementations of clustering. Here, for example, is an implementation of clustering on the
iris dataset again.

Note that fit_predict performs both the fit and predict methods simultaneously. It’s available
for most estimators in scikit-learn, to help keep your code concise. You can see that KMeans actually
does a decent job of this clustering on the iris dataset.

While some of the members of different species cannot be differentiated by the clustering algo-
rithm, broadly speaking, our unsupervised method was able to roughly characterise the three species,
without having any prior knowledge. Clustering methods are incredibly powerful, so you might find
them useful from time to time.

63

8.6.2 Principal Component Analysis

Suppose that you have a lot of different features that you’re struggling to make sense of, and would
like to reduce the number of degrees of freedom in your data. For example, if you see that two
of your features always seem to increase together in near-perfect correlation, you don’t necessarily
need both of these features to get the same information.

This is where dimensionality reduction comes in. The most common dimensionality reduction
is called principal component analysis, and it breaks down large numbers of features into a smaller
number of features (called components), which capture as much of the variance in the data as pos-
sible.

Often this is useful to see where the real variance in your data lies, and plotting your new fea-
tures, the principal components, can provide you with maximum spread in your data with as few
dimensions as possible. We won’t go too into depth here, but here’s a quick implementation for the
iris dataset again.

Note that as we are not explicitly making any predictions, the equivalent function to fit_predict
in an unsupervised model is fit_transform in scikit-learn. Here we do this to extract a new repre-
sentation of the data and save it to a new DataFrame.

64

Plotting these two principal components in the data help us to maximise the spread between these
different groups using only 2 dimensions. Contrast this with the earlier plots where the data seems
to overlap quite considerably. Clever use of PCA can be incredibly helpful in all sorts of disciplines,
as PCA helps to find simplified representations of complex data.

8.7 Large language models

It would be remiss of me in 2024 to teach a course on applied mathematics and machine learning
which made no explicit mention of large language models (LLMs) - the massively pervasive machine
learning phenomenon of the 2020s. Large language models are supervised prediction models, whose
structure is based upon a neural network architecture called a transformer [13]. While it is possible
to implement neural networks with scikit-learn, we didn’t discuss them in this course as they are
often somewhat inefficient for relatively simple prediction tasks, and it’s important to highlight that
machine learning is more than just neural networks.

For complex, high-order tasks like language cognition, large artificial neural networks are incred-
ibly powerful. The depth of their representation is only bounded by the depth of the network, which,
for many of todays systems, is very large indeed. For example, GPT-4 is rumoured to contain 1.76
trillion parameters [1], vastly outnumbering the 100 billion or so neurons in a human brain [10]. If
you haven’t encountered an LLM yet, I highly advise you to try GPT-3.5 at chat.openai.com.

Large language models tend to have accuracy in their responses which scale with their archi-
tecture and compute (i.e. how much computation is used to train them). Despite this, even the
best models like GPT-4 and Claude 3 can and do still confabulate - that is, they make things up
occasionally, with exceptional confidence.

These models work by taking a large amount of text, represented as a list of tokens (small collec-
tions of symbols) as input. The input to the model is called the context, and the model will respond
by predicting the next token in the sequence. Repeating this cycle, the model can generate long
strings of text with human-like readability.

Because they’re so powerful, it’s worth briefly discussing how you can use language models to
supplement your learning (be that now or at university), without falling for their occasionally very
convincing confabulations.

If you want to see one of the most confusing responses from a language model that completely
went off the rails, see this link (warning: contains swearing, religious themes, discussion of paraly-
sis/illness, death, and otherwise unsettling material)
https://chat.openai.com/share/f5341665-7f08-4fca-9639-04201363506e.

8.7.1 Learning from language models

The best way to view a language model is a colloquial and friendly assistant who can give you pretty
general overviews on a topic, but whose facts sometimes need correcting. This can be incredibly
helpful sometimes if you’re looking for ideas on how to start a project or what might be interesting
to explore.

65

chat.openai.com
https://chat.openai.com/share/f5341665-7f08-4fca-9639-04201363506e

Language models are not currently very good at mathematical reasoning, so if you’re going to
use an LLM to help you understand mathematical concepts, try and ask it broad questions about the
context. ”Why should I learn about linear models?” or ”How could learning about dimensionality
reduction help me think about economics?” would be sensible and pretty safe questions to ask the
machine.

In contrast, asking ”Please solve this quartic equation: x4+2x3 ´x2+2 = 0.” is unlikely to yield
any fruitful results. It would likely simply give you vague ideas about possible approaches. Similarly,
”Please prove theorem x” is unlikely to give you a particularly strong mathematical argument - even
though it might look incredibly convincing.

In addition to broad contextual answers, LLMs do seem to be absolutely phenomenal for writing
code. Indeed, many times while writing this course I’ve had the assistance of GPT-4 for quickly
finding sensible solutions to some data manipulation problems. Do this within reason, however. It’s
often best to provide some of the code to the model yourself and ask for small changes, rather than
have it construct an entire program that you will, inevitably, fail to completely understand.

Obviously refrain from plagiarising from LLMs. Generally they’re not trained to provide references
(although some like Perplexity’s system built on GPT-4 can be helpful), and if you ask the machine
to do your work for you, you’re not going to get the in-depth understanding of the topic you expect.
Consider sat-navs for example. While a sat-nav can tell you where to go and often get you to the
right location, using a sat-nav actually appears to decrease your understanding of your environment,
as you’re not forced to actively engage with information about your location any more[4].

Despite this, it’s becoming increasingly likely that healthy use of LLMs will start form a useful
tool in your education which previous generations have not had access to. Learning to use them
correctly can massively enrich your learning. Using them poorly will do the opposite, so be careful!

8.8 Good statistics, bad statistics

As a last final note in this course, I would like to remind you how important it is to use statistics
carefully and with good basis. Poor statistics can mislead and hinder the progress of science, so it’s
incredibly important to make sure that, whatever you find, you check that your findings are actually
real.

Consider the following. If every paper published performs 1 statistical test at the 5% significance
level, then it could be that as many as 1 in every 20 papers contains a result which doesn’t even
exist. That doesn’t make science sound as compelling as it should be.

To that end, here are some important things to keep in mind when you’re using statistics and
machine learning models in your work.

• Adjust your p-values for multiple tests. If you do lots of tests for a single project, make sure
that you don’t stumble across false results by mistake.

• Set your hypotheses before you perform your tests. If you look through your data for patterns
and then perform tests, this is called data dredging and it usually finds spurious relationships.

• Run your tests at a pre-determined p-value. Don’t perform the test first, look at the p-value
and then decide what counts as a significant result.

• Report null results where possible. Science often suffers from a publication bias, where in-
significant results are not published, even though they’re valuable scientific information. One
way to combat this is via preregistration, where you post ahead of time what tests you plan to
perform. Some journals will accept some preregistered papers which later found null results
to combat the publication bias.

• Use good sample sizes. Small samples often skew results so that patterns more easily emerge.
Good analysis should account for the expected skew in small samples.

• Don’t manipulate your collection methods. Don’t stop your data collection early because you
spot a pattern, or otherwise change your methodology in the middle of the experiment.

66

• Be transparent about your data. Always endeavour to include the data you’re analysing when
releasing results. This allows other researchers to check your data is consistent and makes
repeatability much easier.

• When using ML models, NEVER TEST ON YOUR TRAINING DATA. This is a big one. Testing
your models on your training data is such a big no-no, and will almost always show you better
results than on newly sampled data. This also applies to information bleed, where information
in the training data accidentally provides information about the testing data.

Follow these rules and the broad philosophy of good statistics, and you’ll help make science and
discourse on important topics much easier and more transparent!

8.9 Adieu

Thank you so much for taking part in this course on some applied mathematical methods! I endeav-
oured to make it as useful as possible to everyone and to show you how creative you can be with
computational work. Real-world data is complex and beautiful, and it can be inspiring to see old
data in new ways.

Throughout this course we focused on developing some familiarity with python for the purposes
of exploring your own projects later on. While we’ve only seen some of the stars of the data-science
show - namely NumPy, Pandas, matplotlib and scikit-learn - these packages alone can already
take you incredibly far, and they make working with data quite enjoyable.

I hope also that you’ve had a chance to see just how much fun working with data can be! if you
have any feedback on the course or just want to ask some questions, feel free to come and ask me
or contact me via email!

Keenan

Figure 6: Brought to you by the power of A Arthfual Intellliigence.

67

References

[1] Gpt-4 architecture, datasets, costs and more leaked. https://the-decoder.com/
gpt-4-architecture-datasets-costs-and-more-leaked/. Accessed: 2024-04-23.

[2] Jupyter notebook at the python package index. https://pypi.org/project/notebook/. Ac-
cessed: 2024-03-25.

[3] Mars climate orbiter. https://science.nasa.gov/mission/mars-climate-orbiter/. Ac-
cessed: 2024-04-04.

[4] Satnav users risk losing their natural navigational skills, ex-
pert warns. https://www.theguardian.com/science/2016/mar/30/
satnav-users-risk-losing-their-natural-navigational-skills-expert-warns#:
~:text=People%20who%20rely%20on%20satnav,our%20innate%20way%2Dfinding%
20abilities. Accessed: 2024-04-23.

[5] Why do physicists mention “five sigma” in their results? https://home.cern/
resources/faqs/five-sigma#:~:text=In%20the%20case%20of%20the,a%20Higgs%
2Dlike%20particle.%E2%80%9D. Accessed: 2024-04-03.

[6] Z-score and probability calculator. https://www.calculator.net/z-score-calculator.
html?c2z=-1.11&c2p=&c2pg=&c2p0=&c2pin=&c2pout=&calctype=converter&x=
Calculate#converter. Accessed: 2024-03-26.

[7] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Jun-
tang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions.
Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

[8] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024.

[9] Mar Estarellas and Antoine Bellemare. Latent ecologies of the mind: Exploring harmonic syn-
chrony and complexity in human brain signals and beyond. 2024.

[10] Anil Gulati. Understanding neurogenesis in the adult human brain, 2015.

[11] Fernando E Rosas, Pedro AM Mediano, Henrik J Jensen, Anil K Seth, Adam B Barrett, Robin L
Carhart-Harris, and Daniel Bor. Reconciling emergences: An information-theoretic approach to
identify causal emergence in multivariate data. PLoS computational biology, 16(12):e1008289,
2020.

[12] Madalina I Sas, Pedro AM Mediano, Fernando Rosas, Hillary Leone, Andrei Sas, Christopher
Lockwood, Henrik J Jensen, and Daniel Bor. Synch. live: Collective problem-solving through
flocking motion induces higher connectedness to others. 2024.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
�ukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[14] Bertie Vidgen and Taha Yasseri. P-values: misunderstood and misused. Frontiers in Physics,
4:6, 2016.

68

https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://pypi.org/project/notebook/
https://science.nasa.gov/mission/mars-climate-orbiter/
https://www.theguardian.com/science/2016/mar/30/satnav-users-risk-losing-their-natural-navigational-skills-expert-warns#:~:text=People%20who%20rely%20on%20satnav,our%20innate%20way%2Dfinding%20abilities.
https://www.theguardian.com/science/2016/mar/30/satnav-users-risk-losing-their-natural-navigational-skills-expert-warns#:~:text=People%20who%20rely%20on%20satnav,our%20innate%20way%2Dfinding%20abilities.
https://www.theguardian.com/science/2016/mar/30/satnav-users-risk-losing-their-natural-navigational-skills-expert-warns#:~:text=People%20who%20rely%20on%20satnav,our%20innate%20way%2Dfinding%20abilities.
https://www.theguardian.com/science/2016/mar/30/satnav-users-risk-losing-their-natural-navigational-skills-expert-warns#:~:text=People%20who%20rely%20on%20satnav,our%20innate%20way%2Dfinding%20abilities.
https://home.cern/resources/faqs/five-sigma#:~:text=In%20the%20case%20of%20the,a%20Higgs%2Dlike%20particle.%E2%80%9D
https://home.cern/resources/faqs/five-sigma#:~:text=In%20the%20case%20of%20the,a%20Higgs%2Dlike%20particle.%E2%80%9D
https://home.cern/resources/faqs/five-sigma#:~:text=In%20the%20case%20of%20the,a%20Higgs%2Dlike%20particle.%E2%80%9D
https://www.calculator.net/z-score-calculator.html?c2z=-1.11&c2p=&c2pg=&c2p0=&c2pin=&c2pout=&calctype=converter&x=Calculate#converter
https://www.calculator.net/z-score-calculator.html?c2z=-1.11&c2p=&c2pg=&c2p0=&c2pin=&c2pout=&calctype=converter&x=Calculate#converter
https://www.calculator.net/z-score-calculator.html?c2z=-1.11&c2p=&c2pg=&c2p0=&c2pin=&c2pout=&calctype=converter&x=Calculate#converter

	Applied Mathematics at University
	Welcome!
	How can mathematics help me at university?
	Mathematics at university
	Mathematics for your career
	Projects across disciplines

	Introduction to Python
	Getting Started
	At the command line
	Scripting and running the code
	Running code in Jupyter Notebooks

	Basics in Python
	Variables and Comments
	Classes and Types

	A Bit More Python
	Control Flow
	Logic
	"If" blocks
	"While" loops
	"For" loops

	Modules, Libraries and Packages
	Modules
	Packages

	Distributions and Data
	Distributions
	The Normal Distribution
	A brief recap
	Computing a Z-score
	Modelling with Numpy and Matplotlib
	Creating nice plots
	Modelling new distributions

	Working with data
	Subsetting the data
	Plotting the data

	Hypothesis Testing
	Null Hypotheses and Alternative Hypotheses
	p-values
	Smaller values of p
	Performing a t-test
	A cheesy example

	Other statistical tests
	Variations on the t-test
	Tests with more than two samples
	Conclusion

	Exploratory Data Analysis
	Locating Data
	Importing Data
	Cleaning and formatting the data
	Joining data
	Plotting the Data
	Fitting a line of best fit

	Simulation and Hacker Statistics
	Length of movies on Netflix
	Lambda functions

	Monte Carlo Methods
	Hacker statistics
	Confidence intervals
	Bootstrapping

	Machine Learning: A Brief Introduction
	Introduction
	Agents and Models
	Types of machine learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Scikit-Learn
	Features and targets
	Logistic regression

	Linear Regression
	The broad mathematical details
	Linear regression in python

	Some unsupervised techniques
	Clustering
	Principal Component Analysis

	Large language models
	Learning from language models

	Good statistics, bad statistics
	Adieu

